版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设集合,若,则( )A1BCD-12如图,已知函数的图象关于坐标原点对称,则函数的解析式可能是( )ABCD3下
2、列命题中正确的个数( )“x0,2xsinx”的否定是“x00,2x0sinx0”;用相关指数R2可以刻画回归的拟合效果,A0B1C2D34某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”若这四位同学中有且只有两位预测结果是对的,则获得一等奖的团队是()A甲B乙C丙D丁5在平行四边形中,点在边上,将沿直线折起成,为的中点,则下列结论正确的
3、是( )A直线与直线共面BC可以是直角三角形D6 “”是双曲线的离心率为( ) A充要条件B必要不充分条件C即不充分也不必要条件D充分不必要条件7 “,”是“双曲线的离心率为”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件8由数字0,1,2,3组成的无重复数字且能被3整除的非一位数的个数为()A12B20C30D319口袋中装有标号为1,2,3,4,5,6且大小相同的6个球,从袋中一次摸出2个球,记下号码并放回,若这2个号码之和是4的倍数或这2个球号码之和是3的倍数,则获奖.某人从袋中一次摸出2个球,其获奖的概率为( )ABCD10已知命题若实数满足,则或,则下列命题
4、正确的是( )ABCD11甲、乙、丙、丁四位同学各自对、两变量的线性相关性做试验,并用回归分析方法分别求得相关系数与残差平方和如表:甲乙丙丁0.820.780.690.85106115124103则哪位同学的试验结果体现、两变量有更强的线性相关性( )A甲B乙C丙D丁12随机变量服从正态分布,且.已知,则函数图象不经过第二象限的概率为( )A0.3750B0.3000C0.2500D0.2000二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则_.14年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:其中健康指数的含义是:2代表“健康”,
5、1代表“基本健康”,0代表“不健康,但生活能够自理”,代表“生活不能自理”,按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位,则被访问地3位老龄人中恰有1位老龄人的健康指数不大于0的概率为_15某学校为了了解住校学生每天在校平均开销情况,随机抽取了名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在元的学生人数为_16个四面体的顶点在空间直角坐标系中的坐标分别是(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1),则该四面体的体积为_.三、解答题:共70分。解答应写出文字说明、证明过
6、程或演算步骤。17(12分) “DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:男性女性合计2035岁401003650岁4090合计10090190 (1)求统计数据表中的值;(2)假设用抽到的100名2035岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.参考数表:参考
7、公式:,.18(12分)某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?19(12分)某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生的概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投
8、到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.20(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,求,.21(12分)在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值22(10分)已知函数.()当时,恒成立,试求实数的取值范围;()若的解集包含,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、
9、A【解析】由得且,把代入二次方程求得,最后对的值进行检验.【详解】因为,所以且,所以,解得.当时,显然,所以成立,故选A.【点睛】本题考查集合的交运算,注意求出参数的值后要记得检验.2、C【解析】根据函数图像的对称性,单调性,利用排除法求解.【详解】由图象知,函数是奇函数,排除,;当时,显然大于0,与图象不符,排除D,故选C.【点睛】本题主要考查了函数的图象及函数的奇偶性,属于中档题.3、C【解析】根据含量词命题的否定可知错误;根据相关指数的特点可知R2越接近0,模型拟合度越低,可知错误;根据四种命题的关系首先得到逆命题,利用不等式性质可知正确;分别在m=0和m0的情况下,根据解集为R确定不等
10、关系,从而解得m【详解】根据全称量词的否定可知“x0,2xsinx”的否定是“x相关指数R2越接近1,模型拟合度越高,即拟合效果越好;R2越接近若“ab0,则3a3b0当m=0时,mx2-2当m0时,若mx2-2m+1解得:m1,则正确.正确的命题为:本题正确选项:C【点睛】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R求解参数范围的知识.4、D【解析】1.若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;2.若乙获得一等奖,则只有小张的预测正确,与题意不符;3.若丙获得一等奖,则四人的预测都错误,与题意不符
11、;4.若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意,故选D.【思路点睛】本题主要考查演绎推理的定义与应用以及反证法的应用,属于中档题.本题中,若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;若乙获得一等奖,则只有小张的预测正确,与题意不符;若丙获得一等奖,则四人的预测都错误,与题意不符;若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意.5、C【解析】(1)通过证明是否共面,来判断直线与直线是否共面;(2)取特殊位置,证明是否成立;(3)寻找可以是直角三角形的条件是否能够满足;(4)用反证法思想,说明能否成立【详解】,如图,因为四点不共
12、面,所以面,故直线与直线不共面;沿直线折起成,位置不定,当面面 ,此时;取中点,连接,则,若有,则面 即有,在中,明显不可能,故不符合;在中,,,而,所以当时,可以是直角三角形;【点睛】本题通过平面图形折叠,考查学生平面几何知识与立体几何知识衔接过渡能力,涉及反证法、演绎法思想的应用,意在考查学生的直观想象和逻辑推理能力6、D【解析】将双曲线标准化为,由于离心率为可得,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线标准化则根据离心率的定义可知本题中应有,则可解得,因为可以推出;反之成立不能得出.故选:.【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准
13、化后离心率公式的正确使用是解答本题的关键,难度一般.7、D【解析】当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不
14、必要条件.8、D【解析】分成两位数、三位数、四位数三种情况,利用所有数字之和是的倍数,计算出每种情况下的方法数然后相加,求得所求的方法总数.【详解】两位数:含数字1,2的数有个,或含数字3,0的数有1个. 三位数:含数字0,1,2的数有个, 含数字1,2,3有个. 四位数:有个. 所以共有个.故选D.【点睛】本小题主要考查分类加法计数原理,考查一个数能被整除的数字特征,考查简单的排列组合计算,属于基础题.9、A【解析】分析:先求出基本事件的总数,再求出这2个号码之和是4的倍数或这2个球号码之和是3的倍数的基本事件,再根据古典概型的概率计算公式求解即可.详解:从6个球中一次摸出2个球,共有种,2
15、个号码之和是4的倍数或这2个球号码之和是3的倍数,共有:9种,获奖的概率为.故选A.点睛:求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择10、C【解析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.11、D【解析】试题分析:由题表格;相关系数越大,则相关性越强而残差越大,则相关性越小可得甲、乙、丙、丁四位同学,中丁的线性相关性最强考点:线性相关关系的判断12、C【解析】图象不经过第二象限,随机变量服从正态分布,且,函数图象不经过第二象限的概率为,故
16、选C.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】利用分段函数的性质求解【详解】解:,故答案为:1【点睛】本题考查函数值的求法,解题时要认真审题,注意分段函数的性质的灵活运用14、【解析】先确定抽取5位中健康指数大于0和不大于0的人数,再根据古典概型概率求解.【详解】因为350人中健康指数大于0和不大于0各有280,70人,所以根据分层抽样抽取5位中健康指数大于0和不大于0的人数分别为4,1;因此被访问地3位老龄人中恰有1位老龄人的健康指数不大于0的概率为故答案为:【点睛】本题考查分层抽样以及古典概型概率,考查基本分析求解能力,属基础题.15、1【解析】分析:由频率分布直方
17、图,得每天在校平均开销在50,60元的学生所点的频率为0.3,由此能求出每天在校平均开销在50,60元的学生人数详解:由频率分布直方图,得:每天在校平均开销在50,60元的学生所点的频率为:1(0.01+0.024+0.036)10=0.3每天在校平均开销在50,60元的学生人数为5000.3=1故答案为1点睛:本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,意在考查学生对这些基础知识的掌握能力. 16、【解析】分析:满足条件的四面体为正方体的一个角,利用三棱锥的体积计算公式即可得出结果.详解:如图所示,满足条件的四面体为正方体的一个角,该四面体的体积,故答案为.点
18、睛:本题主要考查空间直角坐标系与三棱锥的体积计算公式,考查了空间想象力、推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1),.(2);(3)答案见解析.【解析】试题分析:(1)由题意结合题中所给的列联表可得,.(2)由题意结合二项分布的概率公式可得恰有一名女性的概率是;(3)利用独立性检验的结论求得.所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.试题解析:(1),.(2)依题意得,每一次抽到女性的概率,故抽取的3人中恰有一名女性的概率.(3).所以在使用共享单车的人群中,有的把握认为“性别”与“年龄”有关.点睛:独立性
19、检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释18、当矩形温室的左侧边长为40m,后侧边长为20m时,花卉种植面积达到最大,最大面积为648m【解析】解:设温室的边长分别为:x,y则:xy=800(1分)S=(x-4)(y-2),(x0)(3分)=xy-4y-2x+8=800-=808-(3200 x03200 x+2x23200当且仅当时,等号成立S648(6分)此时x=40y=20,最大的种植面积为:648m219、 (1) ,;(2) 从风险控制角度,建议该投资公司选择项目.【解析】(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论【详解】(1)依题意,设投入到项目的资金都为万元,变量和分别表示投资项目和所获得的利润,则和的分布列分别为由分布列得,因为所以,即,又,解得,;,(2)当投入万元资金时,由(1)知,所以,因为,说明虽然项目和项目的平均收益相等,但项目更稳妥,所以,从风险控制角度,建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金属材料学备课笔记
- 中学食堂厨师招聘合同
- 机场物业管理招投标文件样本
- 政府办公楼环境卫生合同
- 冷链物流运输质量控制
- 物流中心车位租赁协议
- 儿童游乐场场地租赁合同范本
- 大型舞台设备维修吊车租赁合同
- 文化传媒公司董事长招聘协议
- 房地产销售技巧培训
- 工会劳动竞赛培训课件
- 新生儿红臀pdca模板
- 2024年邮政系统招聘考试-邮政投递员笔试历年真题荟萃含答案
- 领导力培养培训
- 班主任的烦恼如何应对学生问题与家长关注的挑战
- 篮球二攻一战术
- 半导体ECP工艺特点
- 2024-2025学年趣味数学社团活动记录
- 2024年黑龙江哈尔滨市文化广电和旅游局“丁香人才周”事业单位招聘笔试冲刺题
- SJG 09-2024 建筑基桩检测标准
- 第3课《生命的奇迹》课件
评论
0/150
提交评论