2022届云南省曲靖市宣威三中数学高二第二学期期末达标测试试题含解析_第1页
2022届云南省曲靖市宣威三中数学高二第二学期期末达标测试试题含解析_第2页
2022届云南省曲靖市宣威三中数学高二第二学期期末达标测试试题含解析_第3页
2022届云南省曲靖市宣威三中数学高二第二学期期末达标测试试题含解析_第4页
2022届云南省曲靖市宣威三中数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题

2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1曲线与直线及直线所围成的封闭图形的面积为( )ABCD2若函数,则下列结论正确的是( )A,在上是增函数B,在上是减函数C,是偶函数D,是奇函数3已知函数f(x)是定义在R上的奇函数,当x0时,f(x)=2x-3A-1B1C-2D24若满足,则的最大值为( )A8B7C2D15已知满足,其中,则的最小值为( )ABCD16已知函数,若有最小值,则实数的取值范围是( )ABCD7若数列是等比数列,则“首项,且公比”是“数列单调递增”的( )A充要条件B充分不必要条件C必要不充分条件

3、D非充分非必要条件8小明同学在做市场调查时得到如下样本数据13610842他由此得到回归直线的方程为,则下列说法正确的是( )变量与线性负相关 当时可以估计 变量与之间是函数关系ABCD9圆的圆心为()ABCD10已知函数,正实数满足且,若在区间上的最大值为2,则的值分别为A,2B,C,2D,411设,则的虚部是( )ABCD12在复平面内复数z对应的点在第四象限,对应向量的模为3,且实部为,则复数等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13不等式恒成立,则a的取值范围是_14命题:,使得成立;命题,不等式恒成立.若命题为真,则实数的取值范围为_.15给出定义 :对于

4、三次函数设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数.设.若则_16设函数,且函数为奇函数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)ax2bxc(a0,bR,cR)(1)若函数f(x)的最小值是f(1)0,且c1, F(x)求F(2)F(2)的值;(2)若a1,c0,且|f(x)|1在区间(0,1上恒成立,试求b的取值范围18(12分)年春节期间,某服装超市举办了一次有奖促销活动,消费每超过元(含元),均可抽奖

5、一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有个形状、大小完全相同的小球(其中红球个,黑球个)的抽奖盒中,一次性摸出个球,其中奖规则为:若摸到个红球,享受免单优惠;若摸出个红球则打折,若摸出个红球,则打折;若没摸出红球,则不打折.方案二:从装有个形状、大小完全相同的小球(其中红球个,黑球个)的抽奖盒中,有放回每次摸取球,连摸次,每摸到次红球,立减元.(1)若两个顾客均分别消费了元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?19(12分)如图,在四边形中,已知,(1)求的值;(2)若,且,求的

6、长20(12分)的内角的对边分别为已知.(1)求角和边长;(2)设为边上一点,且,求的面积.21(12分) “过桥米线”是云南滇南地区特有的一种小吃.在云南某地区“过桥米线”有三种品牌的店,其中品牌店家,品牌店家,品牌店家.()为了加强对食品卫生的监督管理工作,该地区的食品安全管理局决定按品牌对这家“过桥米线”专营店采用分层抽样的方式进行抽样调查,被调查的店共有家,则品牌的店各应抽取多少家?()为了吸引顾客,所有品牌店举办优惠活动:在一个盒子中装有形状、大小相同的个白球和个红球.顾客可以一次性从盒中抽取个球,若是个红球则打六折(按原价的付费),个红球个白球打八折,个红球个白球则打九折,个白球则

7、打九六折.小张在该店点了价值元的食品,并参与了抽奖活动,设他实际需要支付的费用为,求的分布列与数学期望.22(10分)已知函数.(1)求函数的极值;(2)若函数有两个零点,且,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】联立曲线与两条直线的方程组成的方程组可得三个交点分别为,结合图形可得封闭图形的面积为,应选答案D2、C【解析】试题分析:因为,且函数定义域为令,则显然,当时,;当时,所以当时,在上是减函数,在上是增函数,所以选项A,B均不正确;因为当时,是偶函数,所以选项C正确要使函数为奇函数,必有恒成立,

8、即恒成立,这与函数的定义域相矛盾,所以选项D不正确考点:1、导数在研究函数性质中的应用;2、函数的奇偶性3、A【解析】先求出f2,再利用奇函数的性质得f【详解】由题意可得,f2=22-3=1因此,f-2=-f【点睛】本题考查利用函数的奇偶性求值,解题时要注意结合自变量选择解析式求解,另外就是灵活利用奇偶性,考查计算能力,属于基础题。4、B【解析】试题分析:作出题设约束条件可行域,如图内部(含边界),作直线,把直线向上平移,增加,当过点时,为最大值故选B考点:简单的线性规划问题5、C【解析】令,利用导数可求得单调性,确定,进而得到结果.【详解】令,则.,由得:;由得:,在上单调递减,在上单调递增

9、,即的最小值为.故选:.【点睛】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.6、C【解析】对函数求导得出,由题意得出函数在上存在极小值点,然后对参数分类讨论,在时,函数单调递增,无最小值;在时,根据函数的单调性得出,从而求出实数的取值范围.【详解】,构造函数,其中,则.当时,对任意的,则函数在上单调递减,此时,则对任意的,.此时,函数在区间上单调递增,无最小值;当时,解方程,得.当时,当时,此时,.(i)当时,即当时,则对任意的,此时,函数在区间上单调递增,无最小值;(ii)当时,即当时,当时,由零点存在定理可知,存在和,使得,即,且当和时,此时,;当时,此

10、时,.所以,函数在处取得极大值,在取得极小值,由题意可知,可得,又,可得,构造函数,其中,则,此时,函数在区间上单调递增,当时,则,.因此,实数的取值范围是,故选:C.7、B【解析】证明由,可以得到数列单调递增,而由数列单调递增,不一定得到,从而做出判断,得到答案.【详解】数列是等比数列,首项,且公比,所以数列,且,所以得到数列单调递增;因为数列单调递增,可以得到首项,且公比,也可以得到,且公比.所以“首项,且公比”是“数列单调递增”的充分不必要条件.故选:B.【点睛】本题考查等比数列为递增数列的判定和性质,考查充分不不必要条件,属于简单题.8、C【解析】根据数据和回归方程对每一个选项逐一判断

11、得到答案.【详解】变量与线性负相关,正确将代入回归方程,得到,正确将代入回归方程,解得,正确变量与之间是相关关系,不是函数关系,错误答案为C【点睛】本题考查了回归方程的相关知识,其中中心点一定在回归方程上是同学容易遗忘的知识点.9、D【解析】将2cos()化为直角坐标方程,可得圆心的直角坐标,进而化为极坐标【详解】2cos()即22cos(),展开为22(cossin),化为直角坐标方程:x2+y2(xy),1,可得圆心为C,可得1,tan1,又点C在第四象限,圆心C故选D【点睛】本题考查了极坐标方程化为直角坐标方程、三角函数求值,考查了推理能力与计算能力,属于中档题10、A【解析】试题分析:

12、画出函数图像,因为正实数满足且,且在区间上的最大值为1,所以=1,由解得,即的值分别为,1故选A考点:本题主要考查对数函数的图象和性质点评:基础题,数形结合,画出函数图像,分析建立m,n的方程11、B【解析】直接利用复数代数形式的乘除运算化简得,进而可得的虚部.【详解】,的虚部是,故选B【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,共轭复数的概念,属于基础题12、C【解析】设复数,根据向量的模为3列方程求解即可.【详解】根据题意,复平面内复数z对应的点在第四象限,对应向量的模为3,且实部为.设复数,复数.故.故选:C.【点睛】本题考查复数的代数表示及模的运算,是基础题.二、填空题

13、:本题共4小题,每小题5分,共20分。13、 (2,2)【解析】利用指数函数的单调性可以得到一元二次不等式恒成立问题,再根据判别式即可求得结果.【详解】由指数函数的性质知yx是减函数,因为恒成立,所以x2ax2xa2恒成立,所以x2(a2)xa20恒成立,所以(a2)24(a2)0,即(a2)(a24)0,即(a2)(a2)0,故有2a2,即a的取值范围是(2,2)【点睛】本题考查不等式恒成立问题,利用指数函数的单调性将指数不等式转化为一元二次不等式是本题的关键,属基础题.14、【解析】分析:命题为真,则都为真,分别求出取交集即可.详解:命题为真,则都为真,对,使得成立,则;对,不等式恒成立,

14、则,又(当且仅当时取等),故.故答案为.点睛:本题考查函数的性质,复合命题的真假判定方法,考查了推理能力与计算能力,属于中档题.15、-4037【解析】由题意对已知函数求两次导数,令二阶导数为零,即可求得函数的中心对称,即有,借助倒序相加的方法,可得进而可求的解析式,求导,当代入导函数解得,计算求解即可得出结果.【详解】函数函数的导数由得解得,而故函数关于点对称, 故,两式相加得,则.同理,令,则,故函数关于点对称, ,两式相加得,则.所以当时, 解得: ,所以则.故答案为: -4037.【点睛】本题考查对新定义的理解,考查二阶导数的求法,仔细审题是解题的关键,考查倒序法求和,难度较难.16、

15、【解析】根据奇函数求值.【详解】因为为奇函数令,故.【点睛】本题考查根据函数奇偶性求值,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8(2)2,0.【解析】(1)根据函数f(x)最小值是f(1)=0,且c=1,求出a,b,c的值,即可求F(2)+F(2)的值;(2)由于函数f(x)=ax2+bx+c(a0,bR,cR),且a=1,c=0,所以f(x)=x2+bx,进而在满足|f(x)|1在区间(0,1恒成立时,求出即可【详解】(1)由已知c1,abc0,且1,解得a1,b2,f(x)(x1)2.F(x)F(2)F(2)(21)2(21)28.(2)由a

16、1,c0,得f(x)x2bx,从而|f(x)|1在区间(0,1上恒成立等价于1x2bx1在区间(0,1上恒成立,即bx且bx在(0,1上恒成立.又x的最小值为0,x的最大值为2.2b0.故b的取值范围是2,0.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18、(1);(2)选择第一种抽奖方案更合算.【解析】(1)选择方案一,利用积事件的概率公式计算出两位顾客均享受到免单的概率;(2)选择方案一,计算所付款金额的分布列和数学期望值,选择方

17、案二,计算所付款金额的数学期望值,比较得出结论.【详解】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为;(2)若选择方案一,设付款金额为元,则可能的取值为、.,.故的分布列为,所以(元).若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第一种抽奖方案更合算.【点睛】本题考查独立事件的概率乘法公式,以及离散型随机变量分布列与数学期望,同时也考查了二项分布的数学期望与数学期望的性质,解题时要明确随机变量所满足的分布列类型,考查计算能力,属于中等题.19、()()【解析】()在中

18、,由正弦定理可得答案;()由结合()可得,在中,由余弦定理得BC值.【详解】()在中,由正弦定理,得因为, 所以 ()由()可知,因为,所以在中,由余弦定理,得因为所以,即,解得或又,则【点睛】本题主要考查正弦定理,余弦定理在解三角形中的应用,考查计算能力,属于基础题.20、(1),;(2).【解析】试题分析:(1)先根据同角的三角函数的关系求出 从而可得的值,再根据余弦定理列方程即可求出边长的值;(2)先根据余弦定理求出,求出的长,可得,从而得到,进而可得结果.试题解析:(1),由余弦定理可得,即,即,解得(舍去)或,故.(2),.21、()品牌店家,应抽查品牌店家;()分布列见解析,【解析】(1)根据分层抽样每层按比例分配,即可求解;(2)求出随机变量的可能取值,并求出相应的概率,即可得到分布列,进而根据期望公式求解.【详解】()由题意得,应抽查品

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论