版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1命题“nN*,f(n)NAnN*BnN*Cn0Dn02已知点为抛物线: 的焦点. 若过点的直线交抛物线于,两点, 交该抛物线的准线于点,且,则( )AB0C1D23已知集合Mx|(x
2、1)24,xR,N1,0,1,2,3,则MN( )A0,1,2B1,0,1,2C1,0,2,3D0,1,2,34设是可导函数,且满足,则曲线在点处的切线斜率为( )A4B-1C1D-45曲线y=2sinx+cosx在点(,1)处的切线方程为ABCD6是第四象限角,,,则( )ABCD7的展开式中,系数最小的项为( )A第6项B第7项C第8项D第9项8下列函数中,满足“且”的是()ABCD9已知双曲线mx2-yAy=24xBy=210如图是函数的导函数的图象,则下面说法正确的是( ) A在上是增函数B在上是减函数C当时,取极大值D当时,取极大值11将1000名学生的编号如下:0001,0002,
3、0003,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,0020中抽取的号码为0015时,抽取的第40个号码为( )A0795B0780C0810D081512已知,记,则M与N的大小关系是( )ABCD不能确定二、填空题:本题共4小题,每小题5分,共20分。13若x,y满足约束条件x+y-30 x-2y0,则函数z=x+2y的最小值为_14若直线与直线与直线互相垂直,则实数=_15_.16若双曲线的一个焦点是,则该双曲线的渐近线方程是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,以为极点,为极轴建立极坐标系,
4、曲线的极坐标方程是,直线的参数方程是(为参数)求直线被曲线截得的弦长.18(12分)已知函数,其中,.(1)若,求的值;(2)若,求的最大值;(3)若,求证:.19(12分)已知函数.(1)当时,求函数的单调区间;(2)若函数在上为减函数,求实数的取值范围.20(12分)如图,在正四棱柱中,已知AB2, ,E、F分别为、上的点,且.(1)求证:BE平面ACF;(2)求点E到平面ACF的距离21(12分)如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且将AED,DCF分别沿,折起,使,两点重合于,连接,.()求证:;()试判断与平面的位置关系,并给出证明.22(10分)已知椭圆:
5、经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,为椭圆的左焦点,若,求直线的方程.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据全称命题的否定是特称命题,可知命题“nN*,fnN故选D.考点:命题的否定2、B【解析】将长度利用相似转换为坐标关系,联立直线和抛物线方程,利用韦达定理求得答案.【详解】易知:焦点坐标为,设直线方程为: 如图利用和 相似得到:,【点睛】本题考查了抛物线与直线的关系,相似,意在考查学生的计算能力.3、A【解析】试题分析:求出集合M中不等式的解集,确定出M,找出M与N的
6、公共元素,即可确定出两集合的交集解:由(x1)24,解得:1x3,即M=x|1x3,N=1,0,1,2,3,MN=0,1,2故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键4、D【解析】由已知条件推导得到f(1)=-4,由此能求出曲线y=f(x)在(1,f(1)处切线的斜率【详解】由,得,曲线在点处的切线斜率为-4,故选:D.【点睛】本题考查导数的几何意义及运算,求解问题的关键,在于对所给极限表达式进行变形,利用导数的几何意义求曲线上的点的切线斜率,属于基础题.5、C【解析】先判定点是否为切点,再利用导数的几何意义求解.【详解】当时,即点在曲线上则在点处的切线方程为,即故选
7、C【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养采取导数法,利用函数与方程思想解题学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程6、D【解析】根据同角三角函数基本关系,得到,求解,再根据题意,即可得出结果.【详解】因为,由同角三角函数基本关系可得:,解得:,又是第四象限角,所以.故选:D.【点睛】本题主要考查已知正切求正弦,熟记同角三角函数基本关系即可,属于常考题型.7、C【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8
8、项的系数最小,应选答案C。8、C【解析】根据题意知,函数在上是减函数,根据选项判断即可。【详解】根据题意知,函数在上是减函数。选项A,在上是增函数,不符合;选项B,在上不单调,不符合;选项C,在上是减函数,符合;选项D,在上是增函数,不符合;综上,故选C。【点睛】本题主要考查函数单调性的定义应用以及常见函数的单调性的判断。9、A【解析】x21m-y2=1,c=1m+1=310、D【解析】分析:先由图象得出函数的单调性,再利用函数的单调性与导数的关系即可得出.详解:由图象可知上恒有,在上恒有,在上单调递增,在上单调递减则当时,取极大值故选:D.点睛:熟练掌握函数的单调性、极值与导数的关系是解题的
9、关键,是一道基础题.11、A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.12、B【解析】作差并因式分解可得M-N= ,由,(0,1)可作出判断【详解】由题意可得M-N=,b(0,1),(b-1)(-1,0),(-1)(-1,0),(b-1)(-1)0,MN故选B.【点睛】本题考查作差法比较式子大小,涉及因式分解,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、5.【解析】分析:作出约束条件所表示的平面区域,结合图象,得到目标函数经过点B时,目标函数取得最小
10、值,即可求解详解:作出约束条件所表示的平面区域,如图所示,目标函数z=x+2y,则y=-1由图象可知当取可行域内点B时,目标函数取得最小值,由x+y-3=0 x-2y=0,解得B(1,2)此时函数的最小值为z=1+22=5点睛:本题主要考查简单线性规划解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求其关键是准确作出可行域,理解目标函数的意义常见的目标函数有:(1)截距型:形如z=ax+by .求这类目标函数的最值常将函数z=ax+by 转化为直线的斜截式:y=-abx+zb ,通过求直线的截距zb的最值间接求出z的最值;(2)
11、14、【解析】:,即15、4【解析】分析:利用微积分基本定理直接求解即可.详解: 即答案为4.点睛:本题考查微积分基本定理的应用,属基础题.16、【解析】利用双曲线的焦点坐标,求解,然后求解双曲线的渐近线方程。【详解】双曲线的一个焦点是,可得,解得,所以双曲线的渐近线方程是故答案为:【点睛】本题考查双曲线的渐近线方程,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】分析:首先求得直角坐标方程,然后求得圆心到直线的距离,最后利用弦长公式整理计算即可求得最终结果;详解:利用加减消元法消去参数得曲线的直角坐标方程是,同时得到直线的普通方程是 ,圆心到直线的距离
12、,则弦长为 直线被曲线截得的弦长为 点睛:本题考查了圆的弦长公式,极坐标方程、参数方程与直角坐标方程互化等,重点考查学生对基础概念的理解和计算能力,属于中等题18、(1);(2);(3)见解析【解析】分析:(1)赋值法:求(2)先求通项公式,利用解出,设第项的系数最大,所以(3)时,利用组合数的公式化简求解。详解:(1),时, ,令得,令得 ,可得;(2),不妨设中,则 或,中的最大值为;(3)若, ,因为,所以 .点睛:(1)二项式定理求系数和的问题,采用赋值法。(2)求解系数的最大项,先设最大项的系数,注意所求的是第项的系数,计算不等式采用消去法化简计算,取整数。(3)组合数公式的计算整体
13、变形,构造的结构,一般采用计算,不要展开。19、(1)在和上为增函数,在上为减函数;(2)【解析】(1)将代入,求出,令,解不等式可得增区间,令,解不等式可得减区间. (2)根据题意可得在上恒成立,分离参数可得,只需即可.【详解】(1)当时,令,可得或;令,.所以在和上为增函数;在上为减函数.(2)由于在上为减函数,在上恒成立,即,令,可设,于是所以,的取值范围是.【点睛】本题考查了导数在研究函数单调性中的应用,解题的关键是求出导函数,属于中档题.20、(1)见解析(2)【解析】分析:(1)以为原点,所在直线分别为轴建立空间直角坐标系,写出要用的点的坐标,要证明线与面垂直,只需证明这条直线与平
14、面上的两条直线垂直即可;(2)为平面的一个法向量,向量在上的射影长即为到平面的距离,根据点到面的距离公式可得到结论.详解:(1)证明:以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立如图所示空间直角坐标系,则D(0,0,0)、A(2,0,0)、B(2,2,0)、C(0,2,0)、D1(0,0,5)、E(0,0,1)、F(2,2,4)(2,2,0)、(0,2,4)、(2,2,1)、(2,0,1)0,0,BEAC,BEAF,且ACAFA.BE平面ACF.(2)由(1)知,为平面ACF的一个法向量,点E到平面ACF的距离d.故点E到平面ACF的距离为.点睛:本题主要考查利用空间向量求点到
15、面的距离,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.21、 (1)见解析;(2)见解析.【解析】分析:(1)折叠前,,折叠后,从而即可证明;(2)连接交于,连接,在正方形中,连接交于,从而可得,从而在中,即得,从而平面.详解:()证明:折叠前, 折叠后, 又平面,而平面 ()平面,证明如下:连接交于,连接,在正方形中,连接交于,则,所以, 又,即,在中,所以. 平面,平面,所以平面.点睛:本题主要考查线面之间的平行与垂直关系,注意证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想线面垂直的性质,常用来证明线线垂直22、(1);(2)或【解析】(1)由椭圆的离心率可得,从而使椭圆方程只含一个未知数,把点的坐标代入方程后,求得,进而得到椭圆的方程为;(2)因为直线过定点,所以只要求出直线的斜率即可,此时需对直线的斜率分等于0和不等于0两种情况进行讨论,当斜率不为0时,设直线的方程为,点、,利用得到关于的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《水彩画实践》2021-2022学年第一学期期末试卷
- 2024年供应工厂灯具合同范本
- 吉林师范大学《中国现当代文学》2021-2022学年第一学期期末试卷
- 2024年大型游艇租赁合同范本
- 2024年大批旺铺转让合同范本
- 2022年公务员多省联考《申论》真题(河南县级卷)及答案解析
- 烧烤店商家合作协议书范文
- 外研版高中英语选修6教案
- (人教版2024)数学四年级上册第7单元《条形统计图》大单元教学课件
- 吉林师范大学《世界古代史专题》2021-2022学年第一学期期末试卷
- 动画概论教程课件 第4章 动画的分类
- 区域市场的开发与管理
- 单元103热固性塑料注射成型及模具
- 译林版六年级上册英语 unit 5 story time课件
- 五年级上册阅读理解20篇(附带答案解析)经典1
- 2023年国家电投校园招聘笔试题库及答案解析
- SB/T 10016-2008冷冻饮品冰棍
- GB/T 28035-2011软件系统验收规范
- GB/T 1591-2008低合金高强度结构钢
- 公开课课件拿来主义
- 煤矿人力资源管理制度
评论
0/150
提交评论