版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1点A(3,y1),B(0,y2),C(3,y3)是二次函数y(x+2)2+m图象上的三点,则y1,y2,y3的大小关系是()Ay1y2y3By1y3y2Cy3y2y1Dy1y3y22下列事件中,是随机事件的是()A明天太阳从东方升起B任意画一个
2、三角形,其内角和为360C经过有交通信号的路口,遇到红灯D通常加热到100时,水沸腾3下列调查中,适合采用全面调查(普查)方式的是( )A了解重庆市中小学学生课外阅读情况B了解重庆市空气质量情况C了解重庆市市民收看重庆新闻的情况D了解某班全体同学九年级上期第一次月考数学成绩得分的情况4有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x个人,那么x满足的方程是( )ABCD5如图,是一个几何体的三视图,则这个几何体是( )A长方体B圆柱体C球体D圆锥体6一元二次方程的根的情况为( )A没有实数根B只有一个实数根C有两个不相等的实
3、数根D有两个相等的实数根7如图是由6个完全相同的小正方体组成的几何体,其俯视图为( )ABCD8在ABC中,AB=AC=13,BC=24,则tanB等于( )ABCD9如图,将ABC绕点C顺时针旋转90得到EDC若点A,D,E在同一条直线上,ACB=20,则ADC的度数是A55B60C65D7010小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )ABCD二、填空题(每小题3分,共24分)11如图,以点为位似中心,将放大后得到,则_12点A(5,y1),B(3,y2)都在双曲线y,则y1,y2的大小关系是_13如图,某小区规划在一个长30 m、宽20 m的长方形AB
4、CD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78 m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程_14如图,直角三角形的直角顶点在坐标原点,若点在反比例函数的图像上,点在反比例函数的图像上,且,则_15如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_16如图,菱形ABCD的对角线AC与BD相交于点O,AC6,BD8,那么菱形ABCD的面积是_17如图,在中,点在边上,连接并延长交的延长线于点,若,则_. 18二次函数y=3x2+3的最小值是_三、解答题(共6
5、6分)19(10分)如图1,ABC中,AB=AC=4,BAC=,D是BC的中点小明对图1进行了如下探究:在线段AD上任取一点E,连接EB将线段EB绕点E逆时针旋转80,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF
6、的最小值20(6分)在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x,不放回,再由洁玲同学随机取出另一个小球,记为数字y,(1)用树状图或列表法表示出坐标(x,y)的所有可能出现的结果;(2)求取出的坐标(x,y)对应的点落在反比例函数y图象上的概率21(6分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件(1)若商场平均每天要盈利1600元,每件衬衫应
7、降价多少元?(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?22(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?23(8分)如图,在O中,CDOA于点D,CEO
8、B于点E(1)求证:;(2)若AOB=120,OA=2,求四边形DOEC的面积24(8分)综合与探究如图1,平面直角坐标系中,直线分别与轴、轴交于点,.双曲线与直线交于点.(1)求的值;(2)在图1中以线段为边作矩形,使顶点在第一象限、顶点在轴负半轴上.线段交轴于点.直接写出点,的坐标;(3)如图2,在(2)题的条件下,已知点是双曲线上的一个动点,过点作轴的平行线分别交线段,于点,.请从下列,两组题中任选一组题作答.我选择组题.A当四边形的面积为时,求点的坐标;在的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.B当
9、四边形成为菱形时,求点的坐标;在的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.25(10分)画出抛物线y(x1)2+5的图象(要求列表,描点),回答下列问题:(1)写出它的开口方向,对称轴和顶点坐标;(2)当y随x的增大而增大时,写出x的取值范围;(3)若抛物线与x轴的左交点(x1,0)满足nx1n+1,(n为整数),试写出n的值26(10分)如图所示,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知CADB(1)求证:AD是O的切线;(2)若B30,
10、CD,求劣弧BD的长;(3)若AC2,BD3,求AE的长参考答案一、选择题(每小题3分,共30分)1、C【解析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小【详解】二次函数y(x+2)2+m图象的对称轴为直线x2,又a=-1, 二次函数开口向下,x-2时,y随x增大而增大,x-2时,y随x增大而减小,而点A(3,y1)到直线x2的距离最小,点C(3,y3)到直线x2的距离最大,所以y3y2y1故选:C【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的图像与性质.2、C【分析】根据事件发生的可能性判断,一定条件下,一定发生的事件称为必
11、然事件,一定不发生的事件为不可能事件,可能发生可能不发生的事件为随机事件.【详解】解:A选项是明天太阳从东方升起必然事件,不符合题意;因为三角形的内角和为,B选项三角形内角和是360是不可能事件,不符合题意;C选项遇到红灯是可能发生的,是随机事件,符合题意;D选项通常加热到100时,水沸腾是必然事件,不符合题意.故选:C【点睛】本题考查了事件的可能性,熟练掌握必然事件、不可能事件、可能事件的概念是解题的关键.3、D【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多
12、或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、了解重庆市中小学学生课外阅读情况,由于范围较大,适合用抽样调查;故此选项错误;B、了解重庆市空气质量情况,适合抽样调查,故此选项错误;C、了解重庆市市民收看重庆新闻的情况,由于范围较大,适合用抽样调查;故此选项错误;D、了解某班全体同学九年级上期第一次月考数学成绩得分的情况,范围较小,采用全面调查;故此选项正确;故选:D.【点睛】此题主要考查了适合普查的方式,一般有以下几种:范围较小;容易掌控;不具有破坏性;可操作性较强基于以上各点,“了解全班同学本周末参加社区活动的时间”适
13、合普查,其它几项都不符合以上特点,不适合普查4、D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程【详解】解:设每轮传染中平均一个人传染了x个人,则第一轮传染后患流感的人数是:1+x,第二轮传染后患流感的人数是:1+x+x(1+x),因此可列方程,1+x+x(1+x)=1故选:D【点睛】本题主要考查一元二次方程的应用,找到等量关系是解题的关键5、B【分析】根据三视图的规律解答:主视图表示由前向后观察的物体的视图;左视图表示在侧面由左向右观察物体的视图,俯视图表示由上向下观察物体的视图,由此解答即可.【详解】解:该几何体的主视图和左视图都为长方形,俯视图
14、为圆这个几何体为圆柱体故答案是:B.【点睛】本题主要考察简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.6、A【分析】根据根的判别式即可求出答案【详解】由题意可知:=445=161故选:A【点睛】本题考查了一元二次方程根的判别式,解答本题的关键是熟练掌握一元二次方程根的判别式7、B【分析】根据从上面看到的图形即为俯视图进一步分析判断即可.【详解】从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B【点睛】本题主要考查了三视图的判断,熟练掌握相关方法是解题关键.8、B【解析】如图,等腰ABC中,AB=AC=13,BC=24,过A作ADBC于D,则BD=12,在RtABD中
15、,AB=13,BD=12,则,AD=,故tanB=.故选B【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理9、C【分析】根据旋转的性质和三角形内角和解答即可【详解】将ABC绕点C顺时针旋转90得到EDCDCE=ACB=20,BCD=ACE=90,AC=CE,ACD=90-20=70,点A,D,E在同一条直线上,ADC+EDC=180,EDC+E+DCE=180,ADC=E+20,ACE=90,AC=CEDAC+E=90,E=DAC=45在ADC中,ADC+DAC+DCA=180,即45+70+ADC=180,解得:ADC=65,故选C【点睛】此题考查旋转的性质,关键是根据旋转的性
16、质和三角形内角和解答10、B【解析】分析: 先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.详解: 列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=故选B.点睛:本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.二、填空题(每小题3分,共24分)11、【分析】直接利用位似图形的性质进而分析得出答案【详解】解:以点为位似中心,将放大后得到,故答案为【点睛】此题主要考查了位似变换,正确得出对应边的比值是解题关键12、y1y1【分
17、析】根据反比例函数图象上的点的坐标满足函数解析式,即可得到y1,y1的值,进而即可比较大小【详解】点A(5,y1),B(3,y1)都在双曲线y上,当x5时,y1,当x3时,y1,y1y1故答案是:y1y1【点睛】本题主要考查反比例函数图象上点的纵坐标大小比较,掌握反比例函数图象上的点的坐标满足函数解析式,是解题的关键13、(30-2x)(20-x)=61【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m可列方程(30-2x)(20-x)=6114、【分析】构造一线三垂直可得,由相似三角形性质可得,结合得出,进而得出,即可得出答案【详解】解:过点作
18、轴于点,过点作轴于点,又,点在反比例函数的图像上, 经过点的反比例函数图象在第二象限,故反比例函数解析式为:即故答案为:【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,掌握反比例函数中k的几何意义和构造一线三垂直模型得相似三角形,从而正确得出是解题关键15、【解析】试题解析:连接CF,DF,则CFD是等边三角形,FCD=60,在正五边形ABCDE中,BCD=108,BCF=48,的长=,故答案为16、1【分析】根据菱形的面积公式即可求解【详解】菱形ABCD的对角线AC与BD相交于点O,AC6,BD8,菱形ABCD的面积为ACBD=68=1,故答案为:1【点睛】此题主要考查菱
19、形面积的求解,解题的关键是熟知其面积公式17、【分析】根据相似三角形的判定与性质、平行四边形的性质,进而证明,得出线段的比例,即可得出答案【详解】在中,ADBC,DAE=CFE,ADE=FCE,ADEFCEDE=2EC,AD=2CF,在中,AD=BC,等量代换得:BC=2CF2:1【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,数形结合是解题的关键.18、1【分析】根据二次函数的性质求出函数的最小值即可【详解】解:y=1x2+1=1(x+0)2+1,顶点坐标为(0,1)该函数的最小值是1故答案为:1【点睛】本题考查了二次函数的性质,二次函数的最值,正确的理解题意是解题的关键三、解
20、答题(共66分)19、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得, ,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得BCF=BEF=10,从而计算得,完成求解;(3)由(1)和(2)知,CFAB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【详解】(1)将线段EB绕点E逆时针旋转80,点B的对应点是点F, ,即AB=AC=1,D是BC的中点,, , (2)如图,连接BE、EC、BF、
21、EF由(1)可知:EB=EF=ECB,F,C三点共圆,点E为圆心BCF=BEF=10, ,(1)中的结论仍然成立(3)由(1)和(2)知,点F的运动路径在CF上如图,作AMCF于点M点E在线段AD上运动时,点B旋转不到点M的位置故当点E与点A重合时,AF最小此时AF1=AB=AC=1,即AF的最小值为1【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解20、(1)见解析;(2)【分析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结
22、果;(2)由(1)中的列表求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案【详解】(1)列表如下23462(3,2)(4,2)(6,2)3(2,3)(4,3)(6,4)4(2,4)(3,4)(6,4)6(2,6)(3,6)(4,6)则共有12种可能的结果;(2)各取一个小球所确定的点(x,y)落在反比例函数y=的图象上的有(6,2),(4,3),(3,4),(2,6)四种情况,点(x,y)落在反比例函数y=的图象上的概率为=【点睛】本题考查了列表法或树状图法求概率,反比例函数图象上点的坐标特征用到的知识点为:概率=所求情况数与总情况数之比21、(1)36元;(2)2
23、0元;2880元【解析】(1)每件衬衫降价x元,利用每件利润销售件数=总利润,列方程.(2)利用每件利润销售件数=总利润列关系式,得到二次函数,求最值即可.【详解】(1)解:设每件衬衫降价x元,可使每天盈利1600元, 根据题意可列方程:(44-x)(20+5x)=1600, 整理,得 x-40 x+144=0, 解得:x=36或x=4 . 因为尽快减少库存,取x=36 .答:每件衬衫降价36元更利于销售;(2)解:设每件衬衫降价a元,可使每天盈利y元, y=(44-a)(20+5a) =-5 a+200a+880=-5(a-20)+2880,因为-50,所以当a=20时,y有最大值2880.
24、所以,当每件衬衫降价20元时盈利最大,最大盈利是2880元.22、(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)2=1862,解得,x1=
25、0.4,x2=2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,2606.82400,2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解23、(1)详见解析;(2)【分析】(1)连接OC,由AC=BC,可得AOC=BOC,又CDOA,CEOB,由角平分线定理可得CD=CE;(2)由AOB=120,AOC=BOC,可得AOC=60,又CDO=90,得
26、OCD=30,可得,由勾股定理可得,可得;同理可得,进而求出【详解】(1)证明:连接OCAC=BC,AOC=BOCCDOA,CEOB,CD=CE(2)解:AOB=120,AOC=BOC,AOC=60CDO=90,OCD=30,OC=OA=2,同理可得,【点睛】本题主要考查了圆心角与弧的关系,角平分线的性质,勾股定理以及面积计算,熟练掌握圆中的相关定理是解题的关键24、(1);(2),;(3)A.,;B.,.【分析】(1)根据点在的图象上,求得的值,从而求得的值;(2)点在直线上易求得点的坐标,证得可求得点的坐标,证得即可求得点的坐标;(3)A.作轴,利用平行四边的面积公式先求得点的纵坐标,从而
27、求得答案;分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;B.作轴,根据菱形的性质结合相似三角形的性质先求得点的纵坐标,从而求得答案;分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;【详解】(1)在的图象上,点的坐标是 ,在的图象上,;(2)对于一次函数,当时,点的坐标是 ,当时,点的坐标是 ,在矩形中, , ,点的坐标是 ,矩形ABCD中,ABDG, 点的坐标是 ,故点,的坐标分别是: , , ;(3)A:过点作轴交轴于点,轴,四边形为平行四边形,的纵坐标为,点的坐标是 ,当时,如图1,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图2,过点作轴于
28、,直线交 轴于,点的坐标是 ,点的坐标是 ,点的坐标是 ,当时,如图3,点与点关于轴对称,由轴对称的性质可得:点的坐标是;B:过点作轴于点, , ,四边形为菱形,轴,MEBO, , , , 的纵坐标为,点的坐标是;当时,如图4,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图5,过点作轴于,直线交 轴于, 点的坐标是 ,点的坐标是 , ,点的坐标是 ,当时,如图6,点与点关于轴对称,由轴对称的性质可得:点的坐标是;【点睛】本题考查了反比例函数与一次函数的综合应用,运用待定系数法求反比例函数与一次函数的解析式,掌握函数图象上点的坐标特征和矩形、菱形的性质;会运用三角形全等的知识解决线段相等的问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语-山东省淄博市2024-2025学年第一学期高三期末摸底质量检测试题和答案
- 小学一年级100以内
- 《管饲患者临床护理》课件
- 小学数学五年级下分数混合运算
- 《施工视频截图》课件
- 《管子加工及连接》课件
- 《刑事诉讼法立案》课件
- 广东省深圳市福田区2023-2024学年高三上学期期末考试英语试题
- 《滴眼药水的护理》课件
- 游戏行业技术工作概览
- 东南大学医学三基考试外科选择题及答案
- TZJASE 005-2021 非道路移动柴油机械(叉车)排气烟度 检验规则及方法
- GB/T 31989-2015高压电力用户用电安全
- CB/T 749-1997固定钢质百叶窗
- 大佛顶首楞严经浅释
- 品牌(商标)授权书(中英文模板)
- 行动销售(最新版)课件
- 船舶轴系与轴系布置设计课件
- 学校学生评教表
- 晚宴活动拉斯维加斯之夜策划方案
- 配电室巡检表
评论
0/150
提交评论