版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A13、15、14B14、15、14C13.5、15、14D15、15、152如图,某计算机
2、中有、三个按键,以下是这三个按键的功能(1):将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2(3):将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A0.01B0.1C10D1003如图,在平行四边形ABCD中,ABC的平分线BF交AD于点F,FEAB若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A48B35C30D244如果一
3、个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()ABC50D505在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( )A5B10C15D206若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,
4、则()Am1Bm1Cm1Dm17不解方程,判别方程2x23x3的根的情况()A有两个相等的实数根B有两个不相等的实数根C有一个实数根D无实数根8已知O的半径为13,弦ABCD,AB=24,CD=10,则四边形ACDB的面积是()A119B289C77或119D119或2899如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是ABCD10下列长度的三条线段能组成三角形的是A2,3,5B7,4,2C3,4,8D3,3,4二、填空题(共7小题,每小题3分,满分21分)11分解因式8x2y2y_12如图,已知P是正方形ABCD对角线BD上一点,且BPBC,则ACP度数是_度13科技改变生活,手机
5、导航极大方便了人们的出行如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60方向行驶6千米至B地,再沿北偏东45方向行驶一段距离到达古镇C小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_千米14如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_15一个多边形的内角和比它的外角和的3倍少180,则这个多边形的边数是_.16若一个多边形的内角和为1080,则这个多边形的边数为_17如图,在ABC中,C90,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移
6、动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似三、解答题(共7小题,满分69分)18(10分)如图,在中,以为直径的交于点,过点作于点,且()判断与的位置关系并说明理由;()若,求的半径19(5分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有 名;(2)
7、所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平20(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示(1)求线段AB的表达式,并写出自变量x的取值范围;(
8、2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?21(10分)如图,已知抛物线(0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。(1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED1:4,求的值. 22(10分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60,在楼顶B处测得塔顶D处的仰角为45,其中A、C两点分别位于B、D两
9、点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)23(12分)如图,AB为O的直径,点D、E位于AB两侧的半圆上,射线DC切O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且AED45(1)求证:CDAB;(2)填空:当DAE 时,四边形ADFP是菱形;当DAE 时,四边形BFDP是正方形24(14分)先化简,再求值:,其中满足.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次
10、数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义数据x1、x2、xn的加权平均数:(其中w1、w2、wn分别为x1、x2、xn的权数).一组数据中出现次数最多的数据叫做众数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数2、B【解析】根据题中的按键顺序确定出显示的数即可【详解】解:根据题意得: =40,=0.4,0.42=0.04,=0.4,=40,402=400,4006=464,则第400次为0.4故选B【点睛】此题考查了计算器
11、数的平方,弄清按键顺序是解本题的关键3、D【解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积详解:ABEF,AFBE, 四边形ABEF为平行四边形, BF平分ABC,四边形ABEF为菱形, 连接AE交BF于点O, BF=6,BE=5,BO=3,EO=4,AE=8,则四边形ABEF的面积=682=24,故选D点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型解决本题的关键就是根据题意得出四边形为菱形4、A【解析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解【详解】解:圆锥的侧面积=55=故选A【点睛】本题考查圆锥的计算:圆
12、锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长5、B【解析】由概率公式可知摸出黑球的概率为5m,分析表格数据可知摸出黑球次数摸球实验次数的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知摸出黑球次数摸球实验次数的值总是在0.5左右,则由题意可得5m=0.5,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.6、C【解析】将关于x的一元二次方程化成标准形式,然后利用0,即得m的取值范围.【详解】因为方程是关于x的一元二次方程方程,所以可得,4+4m 0,解得m1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.7、
13、B【解析】一元二次方程的根的情况与根的判别式有关,方程有两个不相等的实数根,故选B8、D【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图1,AB=24cm,CD=10cm,AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=12-5=7cm;四边形ACDB的面积 当弦AB和CD在圆心异侧时,如图2,AB=24cm,CD=10cm,.AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=O
14、F+OE=17cm.四边形ACDB的面积四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.9、C【解析】根据向下平移,纵坐标相减,即可得到答案【详解】抛物线y=x2+2向下平移1个单位,抛物线的解析式为y=x2+2-1,即y=x2+1故选C10、D【解析】试题解析:A3+2=5,2,3,5不能组成三角形,故A错误;B4+27,7,4,2不能组成三角形,故B错误;C4+38,3,4,8不能组成三角形,故C错误;D3+34,3,3,4能组成三角形,故D正确;故选D二、填空题(共
15、7小题,每小题3分,满分21分)11、2y(2x+1)(2x1)【解析】首先提取公因式2y,再利用平方差公式分解因式得出答案【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1)故答案为2y(2x+1)(2x-1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键12、22.5【解析】ABCD是正方形,DBC=BCA=45,BP=BC,BCP=BPC=(180-45)=67.5,ACP度数是67.5-45=22.513、3【解析】作BEAC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可【详解】解:作BEAC于E,在RtABE中,sinBAC,
16、BEABsinBAC,由题意得,C45,BC(千米),故答案为3【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键14、25【解析】试题解析:由题意 15、7【解析】根据多边形内角和公式得:(n-2) .得: 16、1【解析】根据多边形内角和定理:(n2)110 (n3)可得方程110(x2)1010,再解方程即可【详解】解:设多边形边数有x条,由题意得:110(x2)1010,解得:x1,故答案为:1【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n2)110 (n3)17、4.8或【解析】根据题意可分两种情况,当CP和
17、CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质分别求出时间t即可.【详解】CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;CP和CA是对应边时,CPQCAB,所以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.三、解答题(共7小题,满分69分)18、(1)DE与O相切,详见解析;(2)5【解析】(1) 根据直径所对的圆心角是直角,再结合所给条件BDEA,可以推导出ODE 90,说明相切的位置关系。(2)根据直径所对的圆心角是直角,并且在BDE中,由DEBC,有BDEDBE
18、 90可以推导出DABC, 可判定ABC是等腰三角形,再根据BDAC可知D是AC的中点,从而得出AD的长度,再在RtADB中计算出直径AB的长,从而算出半径。【详解】(1)连接OD,在O中,因为AB是直径,所以ADB90,即ODAODB90,由OAOD,故AODA,又因为BDEA,所以ODABDE,故ODAODBBDEODBODE90,即ODDE,OD过圆心,D是圆上一点,故DE是O切线上的一段,因此位置关系是直线DE与O相切;(2)由(1)可知,ADB90,故AABD90,故BDAC,由BDEA,则BDEABD90,因为DEBC,所以DEB90,故在BDE中,有BDEDBE90,则ABDDB
19、E,又因为BDAC,即ADBCDB90,所以DABC,故ABC是等腰三角形,BD是等腰ABC底边BC上的高,则D是AC的中点,故ADAC168,在RtABD中,tanA,可解得BD6,由勾股定理可得AB10,AB为直径,所以O的半径是5.【点睛】本题主要考查圆中的计算问题和与圆有关的位置关系,解本题的要点在于求出AD的长,从而求出AB的长.19、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位
20、数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平20、(1);(2)80米/分;(3)6分钟【解析】(1)根据图示,设线段AB的表达
21、式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案【详解】(1)根据题意得:设线段AB的表达式为:y=kx+b (4x16),把(4,240),(16,0)代入得:,解得:,即线段AB的表达式为:y= -20 x+320 (4x16),(2)又线段OA可知:甲的速度为:=60(米/分),
22、乙的步行速度为:=80(米/分),答:乙的步行速度为80米/分,(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)60=960(米),与终点的距离为:2400-960=1440(米),相遇后,到达终点甲所用的时间为:=24(分),相遇后,到达终点乙所用的时间为:=18(分),24-18=6(分),答:乙比甲早6分钟到达终点【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键21、(1);(2)点P的坐标为 ;(3).【解析】(1)利用三角形相似可求AOOB,再由一元二次方程根与系数关系求AOOB构造方程求n;(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相
23、平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可【详解】(1)若ABC为直角三角形AOCCOBOC2=AOOB当y=0时,0=x2-x-n由一元二次方程根与系数关系-OAOB=OC2n2=2n解得n=0(舍去)或n=2抛物线解析式为y=;(2)由(1)当=0时解得x1=-1,x2=4OA=1,OB=4B(4,0),C(0,-2)抛物线对称轴为直线x=-设点Q坐标为(,b)由平行四边形性质可知当BQ、CP为平行四边形对角线时,点P坐标为(,
24、b+2)代入y=x2-x-2解得b=,则P点坐标为(,)当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)代入y=x2-x-2解得b=,则P坐标为(-,)综上点P坐标为(,),(-,);(3)设点D坐标为(a,b)AE:ED=1:4则OE=b,OA=aADABAEOBCOOC=nOB=由一元二次方程根与系数关系得, b=a2将点A(-a,0),D(a,a2)代入y=x2-x-n 解得a=6或a=0(舍去)则n= .【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想22、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形本题涉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业员工派遣服务协议
- 2024南京住宅二手交易协议范本
- 2024年第三方商铺租赁协议
- 商铺租赁协议书2024年
- 2024年协议管理流程及岗位职责
- 2024年担保公司贷款协议格式
- 2024水利设施堤坝施工合作协议
- 2024年酒店管理承包协议格式
- 2024年二手物资买卖协议模板
- 2024年度软件定制开发服务协议模板
- 廉洁风险点及控制措施
- 2024年广西来宾产业投资集团有限公司招聘笔试参考题库含答案解析
- 项目管理甘特图课件
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 我国的武装力量课件
- 液化石油气瓶安全使用告知书范文
- 供应室护理责任组长竞聘
- 高中数学教师的专业发展路径
- LTC与铁三角从线索到回款
- 《旅游市场营销》课程教学设计
- 工程流体力学课后习题答案-(杜广生)
评论
0/150
提交评论