版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下
2、列结论:3a+b0;-1a-23;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个2把直线l:y=kx+b绕着原点旋转180,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )Ay=2x+2By=2x-2Cy=-2x+2Dy=-2x-23已知一次函数y=2x+3,当0 x5时,函数y的最大值是()A0 B3 C3 D74如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()ABCD5把抛物线y2x2向上平移1个单位,再向右平移1个单位,得到的抛物线
3、是()Ay2(x+1)2+1By2(x1)2+1Cy2(x1)21Dy2(x+1)216去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%设降价后房价为x,则去年二月份之前房价为()A(1+40%)30%xB(1+40%)(130%)xCD7下列各数中,为无理数的是()ABCD8如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习9如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )ABCD10已知函数y=的图象如图,当x1时,y的取值范围是()Ay1By1Cy1或y0Dy1或y0二、填空题(共7小题,每小题
4、3分,满分21分)11如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角是45,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_米12我国古代数学著作九章算术卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少?设有人,则可列方程为_13如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F然后再
5、展开铺平,以B、E、F为顶点的BEF称为矩形ABCD的“折痕三角形”如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕BEF”面积最大时,点E的坐标为_14将一张长方形纸片折叠成如图所示的形状,若DBC=56,则1=_15如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;按照此规律,第n个图中正方形和等边三角形的个数之和为_个16如图,O的直径CD垂直于AB,AOC=48,则BDC=度17如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,
6、使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的读数为,则该直尺的宽度为_三、解答题(共7小题,满分69分)18(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线19(5分)在等边三角形ABC中,点P在ABC内,点Q在ABC外,且ABP=ACQ,BP=CQ求证:ABPCAQ;请判断APQ是什么形状的三角形?试说明你的结论20(8分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化
7、、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:05小时;B:510小时;C:1015小时;D:1520小时;E:2025小时;F:2530小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:B D E A C E D B F C D D D B E C D E E F
8、A F F A D C D B D F C F D E C E E E C E并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间ABCDEF频数34 10 7(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图请你对比八九年级的统计图,写出一个结论;校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为 人;(4)问题解决:校团委计划组织中考
9、志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率21(10分)已知:如图,E,F是ABCD的对角线AC上的两点,BEDF.求证:AFCE22(10分)如图,在矩形ABCD中,E是BC边上的点,垂足为F.(1)求证:;(2)如果,求的余切值.23(12分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型
10、号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.24(14分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积参考答案一、选择题(每小题只有一个正确答案,
11、每小题3分,满分30分)1、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-b2a=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-23,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线的顶点坐标(1,n)
12、,抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点2、B
13、【解析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180即可得到直线l【详解】解:设直线AB的解析式为ymxnA(2,0),B(0,1),-2m+n0n=4 -2mn0n4,解得m=2n=4 ,直线AB的解析式为y2x1将直线AB向右平移1个单位长度后得到的解析式为y2(x1)1,即y2x2,再将y2x2绕着原点旋转180后得到的解析式为y2x2,即y2x2,所以直线l的表达式是y2x2故选:B【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键3、B【解析】【分析】由
14、于一次函数y=-2x+3中k=-20由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0 x5范围内函数值的最大值【详解】一次函数y=2x+3中k=20,y随x的增大而减小,在0 x5范围内,x=0时,函数值最大20+3=3,故选B【点睛】本题考查了一次函数y=kx+b的图象的性质:k0,y随x的增大而增大;k0,y随x的增大而减小4、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形故选A【考点】简单组合体的三视图5、B【解析】函数y=-2x2的顶点为(0,0),向上平移1个单位,再向右平移1个单位的顶点为(1,1),将函数y=-
15、2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点6、D【解析】根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决【详解】由题意可得,去年二月份之前房价为:x(130%)(1+40%)=,故选:D【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式7、D【解析】A=2,是有理数;B=2,是有理数;C,是有理数;D,是无理数,故选D.8、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪
16、域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.9、C【解析】连接AE,只要证明ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,AB是直径,AEB=90,即AEBC,EB=EC,AB=AC,C=B,BAC=50,C= (180-50)=65,故选:C【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题10、C【解析】试题分析:根据反比例函数的
17、性质,再结合函数的图象即可解答本题解:根据反比例函数的性质和图象显示可知:此函数为减函数,x-1时,在第三象限内y的取值范围是y-1;在第一象限内y的取值范围是y1故选C考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k1时,图象在二、四象限,在每个象限内,y随x的增大而增大二、填空题(共7小题,每小题3分,满分21分)11、42【解析】延长AB交DC于H,作EGAB于G,则GH=DE=15米,EG=DH,设BH=x米,则C
18、H=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度【详解】延长AB交DC于H,作EGAB于G,如图所示:则GH=DE=15米,EG=DH, 梯坎坡度i=1:2.4,BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,BH=5米,CH=12米,BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),=45,EA
19、G=90-45=45,AEG是等腰直角三角形,AG=EG=32(米),AB=AG+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键12、【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有人,列出方程: 故答案为【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程13、(,2)【解析】解:如图,当点B与点D重合时,BEF面积最大,设BE=DE=x,则AE=4-x,在RTABE中,EA2+AB
20、2=BE2,(4-x)2+22=x2,x=,BE=ED=,AE=AD-ED=,点E坐标(,2)故答案为:(,2)【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键14、62【解析】根据折叠的性质得出2=ABD,利用平角的定义解答即可【详解】解:如图所示:由折叠可得:2=ABD,DBC=56,2+ABD+56=180,解得:2=62,AE/BC,1=2=62,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出2=ABD是关键15、9n+1【解析】第1个图由1个正六边形、6个正方形和6个等边三角形组成,正方形和等边三角形的和=6+6=12=9+1
21、;第2个图由11个正方形和10个等边三角形组成,正方形和等边三角形的和=11+10=21=92+1;第1个图由16个正方形和14个等边三角形组成,正方形和等边三角形的和=16+14=10=91+1,第n个图中正方形和等边三角形的个数之和=9n+1故答案为9n+116、20【解析】解:连接OB,O的直径CD垂直于AB,=,BOC=AOC=40,BDC=AOC=40=2017、【解析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.【详解】连接OC,OD,OC与AD交于点E, 直尺的宽度: 故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.三、解答题(共7小
22、题,满分69分)18、(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):19、 (1)证明见解析;(2) APQ是等边三角形【解析】(1)根据等边三角形的性质可得ABAC,再根据SAS证明ABPACQ;(2)根据全等三角形的性质得到APAQ ,再证PAQ 60,从而得出APQ是等边三角形.【详解】证明:(1)ABC为等边三角形, AB=AC,BAC=60,在ABP和ACQ中, ABPACQ(SAS),(2)ABPACQ, BAP=CAQ,AP=AQ, BAP+CAP=60, PAQ=CAQ+C
23、AP=60,APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,ABPACQ是解题的关键.20、(1)7,9;(2)见解析;(3)在1520小时的人数最多;35;(4).【解析】(1)观察统计图即可得解;(2)根据题意作图;(3)根据两个统计图解答即可;根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)八九年级共青团员志愿服务时间在1520小时的人数最多;200=35,所以估计九年级200名团员中
24、参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率=【点睛】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.21、参见解析【解析】分析:先证ACB=CAD,再证出BECDFA,从而得出CE=AF详解:证明:平行四边形中,又, 点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.22、(1)见解析;(2).【解析】(1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【详解】解:
25、(1)证明:四边形是矩形,在和中,;(2),设,.【点睛】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.23、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【解析】分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题(2)设购买A型自行车a辆,B型自行车的(600-a)辆总费用为w元构建一次函数,利用一次函数的性质即可解决问题详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元,由题意,解得,型自行车的单价为210元,B型自行车的单价为240元.(2)设购买A型自行车a辆,B型自行车的辆.总费用为w元.由题意,随a的增大而减小,当时,w有最小值,最小值,最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.点睛:本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村公路可行性研究报告
- 2024年公司流程优化与管理顾问协议
- 2024年专属家政服务聘用协议
- 道德与法治八上8.1《国家好大家才会好》教学设计
- 2024香港商业贷款协议格式
- 2023-2024学年浙江省温州东瓯中学高三下学期第一次阶段检测试题数学试题
- 2024专业个人汽车租赁协议指南
- DB11∕T 1704-2019 中小学生体育与健康课运动负荷监测与评价
- 2024年定制航拍服务协议范本下载
- 2024年全球贸易条款专业翻译协议
- 国家开放大学《合同法》章节测试参考答案
- MOOC 中国天气-南京信息工程大学 中国大学慕课答案
- 2024年仓储与配送管理形成性考核答案大揭秘
- 中医饮食营养学智慧树知到期末考试答案章节答案2024年滨州医学院
- 《电气装置安装工程 盘、柜及二次回路接线施工及验收规范》
- 2024校园安全事故案例
- 项目组织管理机构及人员配备(完整版)
- 2024年宁波慈溪市诚安燃气服务有限公司招聘笔试参考题库附带答案详解
- 机械设备:低空经济系列报告(一):他山之石-Joby的前世今生
- 信息化作战平台
- 特种设备安全风险日管控、周排查、月调度管理制度及相关表格
评论
0/150
提交评论