![全等三角形的判定角边角角角边课件_第1页](http://file4.renrendoc.com/view/2e024e0c8d973e9c562d552a4d46afe5/2e024e0c8d973e9c562d552a4d46afe51.gif)
![全等三角形的判定角边角角角边课件_第2页](http://file4.renrendoc.com/view/2e024e0c8d973e9c562d552a4d46afe5/2e024e0c8d973e9c562d552a4d46afe52.gif)
![全等三角形的判定角边角角角边课件_第3页](http://file4.renrendoc.com/view/2e024e0c8d973e9c562d552a4d46afe5/2e024e0c8d973e9c562d552a4d46afe53.gif)
![全等三角形的判定角边角角角边课件_第4页](http://file4.renrendoc.com/view/2e024e0c8d973e9c562d552a4d46afe5/2e024e0c8d973e9c562d552a4d46afe54.gif)
![全等三角形的判定角边角角角边课件_第5页](http://file4.renrendoc.com/view/2e024e0c8d973e9c562d552a4d46afe5/2e024e0c8d973e9c562d552a4d46afe55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全等三角形的判定角边角角角边 三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).ABCDEF在ABC和 DEF中 ABC DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为: 三角形全等判定方法1知识梳理:用符号语言表达为:在ABC与DEF中AB=DEB=EBC=EFABCDEF(SAS)ABCDEF 两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS” 三角形全等判定方法2知识梳理:已知:如图,要得到ABC ABD,已经隐含有条件是_根据所给的判定方法,在下列横线上写出还需要的两个条件(1)_ (SAS) ( 2 ) _ (SSS)ABCDAB=
2、ABAC=ADCAB= DABBC=BDAC=AD 如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?你能说明其中理由吗?议一议怎么办?可以帮帮我吗?如果知道两个三角形的两个角及一条边分别对应相等,这两个三角形一定全等吗?这时应该有两种不同的情况:(1)两个角及两角的夹边;(2)两个角及其中一角的对边问题导入 先任意画出一个ABC,再画一个ABC,使AB=AB, A=A, B =B 。把画好的ABC剪下,放到ABC上,它们全等吗?探究1已知:任意 ABC,画一个 ABC,使ABAB, A =A, B=B
3、 :画法:2、在 AB的同旁画DAB=A , EBA =B, A D,BE交于点C。1、画ABAB; ABC就是所要画的三角形。问:通过实验可以发现什么事实?探究1全等三角形的判定方法3:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等. 角边角在ABC和 ABC中A= AAB= ABB= BABC ABC(ASA)ACBACB(ASA)1、如图 ,AB=AC,B=C,(1)ABE 和ACD全等吗?(2)AD=AE吗?例1:AEDCB练习:如图,ABCDCB,ACBDBC, 试说明ABC DCB.ADCB解 ABCDCB,ACBDBC,(已知)又 BC=CB(公共边)ABD A
4、CD.(ASA)如图,要证明ACE BDF,根据给定的条件和指明的依据,将应当添设的条件填在横线上。(1)ACBD,CE=DF, (SAS) ( 2) AC=BD, ACBD (ASA) ( 3) CE=DF, (ASA) ( 4) C= D, (ASA)C BAEFD课堂练习AEC=BFDAC=BDA=BC=DAC=BDA=B思考:如果两个三角形有两个角和其中一个角的对边分别对应相等,那么这两个三角形是否全等?ACBACB 例:如图:如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等?已知:AD,BE,ACDF求证:ABCDEFACBDFE全等三角形的判定方法
5、4:如果两个三角形的两个角及其中一个角的对边分别对应相等,那么这两个三角形全等.在ABC和 ABC中B= BBC= BCA= AABC ABC(AAS)ACBACB(AAS)用符号语言表达为: 两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。 两角和其中一角的对边分别相等的两个三角形全等,简写成“角角边”或“AAS”(ASA)(AAS)1.要使下列各对三角形全等,需要增加什么条件?(1)(2)2.如图,已知AB与CD 相交于O,AD,COBO,说明AOC与DOB全等的理由. (利用A.A.S定理说明)已知:ACDF,BCEF,AE=BD.证明: AC=DF例1、如图 ,AB=AC,B=C,那么ABE 和ACD全等吗?为什么?试一试AEDCB(ASA) ABE ACD(已知)AB=ACB=CA= A(公共角)在ABE与ACD中理由:解:ABE ACD(已知)2、如图,AD=AE,B=C,那么BE和CD相等么?为什么?AEDCB(全等三角形对应边相等) BE=CD(AAS) ABE ACD(公共角) AE=ADA=AB= C(已知)在ABE与ACD中理由:解:BE=CD(已知)4已知:如图,1= 2, 3 = 4。求证: AC=AD。1234A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7-1《短歌行》说课稿 2024-2025学年统编版高中语文必修上册
- 2025年企业招标承包经营合同
- 《7 剪纸艺术》(说课稿)-2023-2024学年四年级下册综合实践活动粤教版
- Module 8 Unit 1 Were going to visit Hainan.(说课稿)-2024-2025学年外研版(三起)英语四年级上册
- Unit 2 My week Period 4 Get ready for the new school year(说课稿)-2024-2025学年人教PEP版英语五年级上册
- 19海滨小城 (说课稿)-2024-2025学年三年级上册语文统编版
- 2025农副产品买卖合同书模板(合同版本)
- 2023八年级语文上册 第五单元 口语交际 复述与转述配套说课稿 新人教版
- 2024年春八年级历史下册 第10课 社会主义民主与法制的加强说课稿1(pdf) 川教版
- 2023二年级语文下册 第一单元 1 古诗二首 咏柳说课稿 新人教版
- 天津市河西区2024-2025学年四年级(上)期末语文试卷(含答案)
- 北京市北京四中2025届高三第四次模拟考试英语试卷含解析
- 2024年快递行业无人机物流运输合同范本及法规遵循3篇
- 地下商业街的规划设计
- 伤残抚恤管理办法实施细则
- 中国慢性冠脉综合征患者诊断及管理指南2024版解读
- 提升模组良率-六西格玛
- DL-T+5196-2016火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程
- 2024-2030年中国产教融合行业市场运营态势及发展前景研判报告
- 2024年微生物检测试剂行业商业计划书
- 通信设备售后服务方案
评论
0/150
提交评论