版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位2
2、设,则“ “是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必条件3复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )ABCD4南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A1624B1024C1198D15605设复数满足,则( )A1B-1CD6已知a,b是两条不同的
3、直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:它的图象关于直线x=对称;它的最小正周期为;它的图象关于点(,1)对称;它在上单调递增.其中所有正确结论的编号是( )ABCD8已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )ABCD9复数的虚部为( )ABC2D10已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值
4、为( )A2020B20l9C2018D201711设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( )A是偶函数B是奇函数C是奇函数D是奇函数12已知集合,集合,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的各项均为正数,记为数列的前项和,若,则_.14如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为_百米.15在中,点在边上,且,设,则_(用,表示)16已知,满足,则的展开式中的系数为_.三、解答题:共70分。解答
5、应写出文字说明、证明过程或演算步骤。17(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.18(12分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.19(12分)如图,已知,分别是正方形边,的中点,与交于点,都垂直于平面,且,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.20(12分)已知二阶矩阵A=abcd,矩阵A属于特征值1=-1的一个特征向量为1=1-1,属于特征值2=4的一个特征向量为2=32.求矩阵A.21(12分)已知两数(1
6、)当时,求函数的极值点;(2)当时,若恒成立,求的最大值22(10分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.组别分组频数频率1234估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.参考答案一、选择题
7、:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.2B【解析】解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.3A【
8、解析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,则,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.4B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,两两作差得:3,4,6,9,13,18,两两作差得:1,2,3,4,5,设该数列为,令,设的前项和为,又令,设的前项和为.易,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用
9、,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.5B【解析】利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.6D【解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题7B【解析】根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称
10、性、单调区间等相关性质求解即可.【详解】因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin3(x+)-+1=2sin(3x+)+1,其最小正周期为,故正确;令3x+=k+,得x=+(kZ),所以x=不是对称轴,故错误;令3x+=k,得x=-(kZ),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故正确;令2k-3x+2k+,kZ,得-x+,取k=2,得x,取k=3,得x,故错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性
11、、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型8A【解析】由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,所以;当轴时,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.9D【解析】根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.10B【解析】根据题意计算,计算,得到答案.【
12、详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.11C【解析】根据函数奇偶性的性质即可得到结论【详解】解:是奇函数,是偶函数,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确为偶函数,故错误,故选:【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键12B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.二、填空题:本题共4小题,每小
13、题5分,共20分。1363【解析】对进行化简,可得,再根据等比数列前项和公式进行求解即可【详解】由数列为首项为,公比的等比数列,所以63【点睛】本题考查等比数列基本量的求法,当处理复杂因式时,常用基本方法为:因式分解,约分。但解题本质还是围绕等差和等比的基本性质14【解析】建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,则,则,当时,则单调递减,当时,则单调递增,所以当时,最短,此时.故答案为:【点睛】本题考查导数的实际应用,属于中档题.15【解析】结合图形及向量的线性运
14、算将转化为用向量表示,即可得到结果【详解】在中,因为,所以,又因为,所以故答案为:【点睛】本题主要考查三角形中向量的线性运算,关键是利用已知向量为基底,将未知向量通过几何条件向基底转化161【解析】根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数【详解】由题意,的展开式中的系数为故答案为:1【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2)【解析】(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两
15、个三角形,列出不等式,解不等式即可.【详解】(1)由得:,即,解得,.(2)的图像与直线及围成的四边形,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.18(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此
16、,平面;(2)由于在底面的投影为,平面,平面,为正三角形,且为的中点,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.19(1).(2)【解析】(1)利用线面垂直的性质得出,进而得出,利用相似三角形的性质,得出,从而得出的值;(2)利用线面垂直的判定定理得出平面,进而得出四面体的体积,计算出,即可得出四面体的体积.【详解】(1)因为平面,平面,所以又因为,都垂直于平面,所以又,分别是正方形边,的中点,且,所以.(2)因为,分别是正方形边,的中点,所以又因为,都垂直于平面,平面,所以因为平面,所以平面所以,四面体
17、的体积,所以.【点睛】本题主要考查了线面垂直的性质定理的应用,以及求棱锥的体积,属于中档题.20A=2321【解析】运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,A1=11,即abcd1-1=-11-1,得a-b=-1,c-d=1.同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵A=2321【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单21(1)唯一的极大值点1,无极小值点(2)1【解析】(1)求出导函数,求得的解,确定此解两侧导数值的正负,确定极值点;(2)问题可变形为恒成立,由导数求出
18、函数的最小值,时,无最小值,因此只有,从而得出的不等关系,得出所求最大值【详解】解:(1)定义域为,当时,令得,当所以在上单调递增,在上单调递减,所以有唯一的极大值点,无极小值点(2)当时,若恒成立,则恒成立,所以恒成立,令,则,由题意,函数在上单调递减,在上单调递增,所以,所以所以,所以,故的最大值为1【点睛】本题考查用导数求函数极值,研究不等式恒成立问题在求极值时,由确定的不一定是极值点,还需满足在两侧的符号相反不等式恒成立深深转化为求函数的最值,这里分离参数法起关键作用22(1);(2)82,分布列见解析,【解析】(1)从20人中任取3人共有种结果,恰有1人成绩“优秀”共有种结果,利用古典
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私人定制房产转让协议样本
- 福利院护工招聘合同细则
- 酒店管理教师劳动合同模板
- 高端商务楼租赁合同模板
- 风力发电场并网配网工程施工合同
- 土石方填筑设计合同
- 停车场地平施工合同
- 零售业专用送货员聘用合同
- 医疗美容机构美发师聘用合同
- 亲子活动表演助理招聘协议
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 植物景观规划与设计智慧树知到期末考试答案章节答案2024年青岛理工大学
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- 三年级上册数学教案-4.2 三位数减两位数、三位数的笔算减法 ︳人教新课标
- MOOC 法理学-西南政法大学 中国大学慕课答案
- 2024年重庆璧山区国隆农业科技发展有限公司招聘笔试参考题库含答案解析
- 事业单位工勤技能综合知识试卷及答案
- 如何创造有意义的人生
- 冬季如何预防脑卒中
- 消防管道隐蔽工程验收记录
- 习思想教材配套练习题 第一章 新时代坚持和发展中国特色社会主义
评论
0/150
提交评论