版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知f(x)=ax2+bx是定义在a1,2a上的偶函数,那么a+b的值是ABCD2一个频率分布
2、表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )ABCD3下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位4已知等差数列的前n项和为,且,则( )A4B8C16D25双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD26已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()ABCD7已知,是两平面,l,m,n是三条不同的直线,则不正确命题是( )A若m,n/,则mnB若m/,
3、n/,则m/nC若l,l/,则D若/,l,且l/,则l/8执行如图所示的程序框图,则输出的的值是( )A8B32C64D1289已知函数(其中,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:直线是函数图象的一条对称轴;点是函数的一个对称中心;函数与的图象的所有交点的横坐标之和为.其中正确的判断是( )ABCD10两圆和相外切,且,则的最大值为( )AB9CD111已知复数满足,则的共轭复数是( )ABCD12已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )A充分不必要条件B必要不充分条件C充分必要条件D
4、既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程为_.14已知实数满足则点构成的区域的面积为_,的最大值为_15某部队在训练之余,由同一场地训练的甲乙丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为_.16已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:
5、对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).18(12分)已知函数.()若是第二象限角,且,求的值;()求函数的定义域和值域.19(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积20(12分)在ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2b2)a2ccosC+ac2cosA(1)求角B的大小;(2)若ABC外接圆的半径为,求ABC面积的最大值.21(12分)追求人类与生存环境的和谐
6、发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于0,50,(50,100的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天
7、因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.22(10分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】依照偶函数的定义,对定义域内的任意实数,f(x)=f(x),且定义域关于原点对称,a1=2a,即可得解.【详解】根据偶函
8、数的定义域关于原点对称,且f(x)是定义在a1,2a上的偶函数,得a1=2a,解得a=,又f(x)=f(x),b=0,a+b=故选B【点睛】本题考查偶函数的定义,对定义域内的任意实数,f(x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数2B【解析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3D【解析】根据函数图像得到函数的一个解析式为,
9、再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.4A【解析】利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.5A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能
10、力和转化能力.6A【解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离
11、,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.7B【解析】根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A若,则在中存在一条直线,使得,则,又,那么,故正确;B若,则或相交或异面,故不正确;C若,则存在,使,又,则,故正确D若,且,则或,又由,故正确故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.8C【解析】根据给定的程序框图,逐次计
12、算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.9C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否详解:因为为对称中心,且最低点为,所以A=3,且 由 所以,将带入得 ,所以由此可得错误,正确,当时,所
13、以与 有6个交点,设各个交点坐标依次为 ,则,所以正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题10A【解析】由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.11B【解析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.12C【解析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可【详解】点
14、不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,故选:【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键二、填空题:本题共4小题,每小题5分,共20分。13【解析】求导,得到和,利用点斜式即可求得结果.【详解】由于,所以,由点斜式可
15、得切线方程为.故答案为:.【点睛】本题考查利用导数的几何意义求切线方程,属基础题.148 11 【解析】画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.15【解析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.【详解】首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行
16、的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.故答案为:.【点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.16【解析】由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析;(3)见解析【解析】(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数
17、,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;令,;则;令,则;(3)证明:,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;当时,有两个极值点;函数在,上单调递增,在上单调递减;又;只需,在时恒成立;只需;令,其中一个正解是;,;单调递增,(1);综上得证【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数证明不等式,考查了转化思想、不等式的放缩,属难题18()()函数的定义域为,值域为【解析】(1)由
18、为第二象限角及的值,利用同角三角函数间的基本关系求出及的值,再代入中即可得到结果.(2)函数解析式利用二倍角和辅助角公式将化为一个角的正弦函数,根据的范围,即可得到函数值域.【详解】解:(1)因为是第二象限角,且,所以.所以,所以.(2)函数的定义域为.化简,得,因为,且,所以,所以.所以函数的值域为.(注:或许有人会认为“因为,所以”,其实不然,因为.)【点睛】本题考查同角三角函数的基本关系式,三角函数函数值求解以及定义域和值域的求解问题,涉及到利用二倍角公式和辅助角公式整理三角函数关系式的问题,意在考查学生的转化能力和计算求解能力,属于常考题型.19(1),;(2).【解析】(1)先把参数
19、方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积【详解】(1)曲线的极坐标方程为: ,因为曲线的普通方程为: , 曲线的极坐标方程为;(2) 由(1)得:点的极坐标为, 点的极坐标为,点到射线的距离为 的面积为 .【点睛】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.20(1)B(2)【解析】(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积
20、公式即可求解.【详解】(1)因为b(a2+c2b2)ca2cosC+ac2cosA,即2bcosBacosC+ccosA由正弦定理可得,2sinBcosBsinAcosC+sinCcosAsin(A+C)sinB,因为,所以,所以B;(2)由正弦定理可得,b2RsinB2,由余弦定理可得,b2a2+c22accosB,即a2+c2ac4,因为a2+c22ac,所以4a2+c2acac,当且仅当ac时取等号,即ac的最大值4,所以ABC面积S即面积的最大值.【点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.21(1);(2)(i)详见解析;(ii)会超过;详见解析【解析】(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.(ii)由(i)的条件结合7月与8月空气质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私人定制房产转让协议样本
- 福利院护工招聘合同细则
- 酒店管理教师劳动合同模板
- 高端商务楼租赁合同模板
- 风力发电场并网配网工程施工合同
- 土石方填筑设计合同
- 停车场地平施工合同
- 零售业专用送货员聘用合同
- 医疗美容机构美发师聘用合同
- 亲子活动表演助理招聘协议
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 植物景观规划与设计智慧树知到期末考试答案章节答案2024年青岛理工大学
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- 三年级上册数学教案-4.2 三位数减两位数、三位数的笔算减法 ︳人教新课标
- MOOC 法理学-西南政法大学 中国大学慕课答案
- 2024年重庆璧山区国隆农业科技发展有限公司招聘笔试参考题库含答案解析
- 事业单位工勤技能综合知识试卷及答案
- 如何创造有意义的人生
- 冬季如何预防脑卒中
- 消防管道隐蔽工程验收记录
- 习思想教材配套练习题 第一章 新时代坚持和发展中国特色社会主义
评论
0/150
提交评论