261二次函数(1)_第1页
261二次函数(1)_第2页
261二次函数(1)_第3页
261二次函数(1)_第4页
261二次函数(1)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教课标九下人教课标九下 26.1(1) 22246448212yx22yx2yx26.1 二次函数及其图象二次函数及其图象 (1) 如图:正方体的六个面是全等的正方形,设正方如图:正方体的六个面是全等的正方形,设正方体的棱长为体的棱长为x,表面积为,表面积为yy = 6x2 显然对于显然对于x的每一个值,的每一个值,y都有一个对应值,即都有一个对应值,即y是是x的函数,它们具体的关系可以表示为的函数,它们具体的关系可以表示为引入新知引入新知问题问题1: 多边形的对角线数多边形的对角线数d与边数与边数n有什么关系?有什么关系? 由图中可以想出,如果多边形有由图中可以想出,如果多边形有n条边,那

2、么它有条边,那么它有_ 个个顶点顶点 从一个顶点出发,连接与这点不相邻的各顶点,可从一个顶点出发,连接与这点不相邻的各顶点,可以作以作 条对角线条对角线 因为像线段因为像线段MN与与NM那样,连接相同两顶点的对角线是那样,连接相同两顶点的对角线是同一条对角线,所以多边形的对角线总数同一条对角线,所以多边形的对角线总数321nndn(n2)MN 想一想想一想 上式表示了多边形的对角线数上式表示了多边形的对角线数d与边数与边数n之间的关系,对于之间的关系,对于n的每一个值,的每一个值,d都有都有一个对应值,即一个对应值,即d是是n的函数的函数即即nnd23212 想一想想一想问题问题2 :某工厂一

3、种产品现在的年产量是:某工厂一种产品现在的年产量是20件,件,计划今后两年增加产量如果每年都比上一年的计划今后两年增加产量如果每年都比上一年的产量增加产量增加x倍,那么两年后这种产品的产量倍,那么两年后这种产品的产量y将随将随计划所定的计划所定的x的值而确定,的值而确定,y与与x之间的关系应怎样之间的关系应怎样表示?表示?这种产品的原产量是这种产品的原产量是20件,一年后的产量是件,一年后的产量是 件,再经过一年后的产量是件,再经过一年后的产量是 件,即两年后的产量为件,即两年后的产量为(20+20 x)(20+20 x)+x(20+20 x) 想一想想一想 式表示了两年后的产量式表示了两年后

4、的产量y与计划增产的倍与计划增产的倍数数x之间的关系,对于之间的关系,对于x的每一个值,的每一个值,y都有都有一个对应值,即一个对应值,即y是是x的函数的函数2120 xy2040202xxy 想一想想一想y = 6x2 2040202xxynnd23212 有什么共同点有什么共同点? 函 数在上面的问题中,函数都是用自变量的二次式表示的在上面的问题中,函数都是用自变量的二次式表示的一般地,形如一般地,形如2, ,0yaxbxc a b ca是常数,的函数,叫做的函数,叫做二次函数二次函数其中,其中,x是自变量,是自变量,a,b,c分别是函数表达式的二次项系数、一次项系分别是函数表达式的二次项

5、系数、一次项系数和常数项数和常数项细心观察细心观察 现在我们学习过的函数有:现在我们学习过的函数有: 0abaxy0kxky02acbxaxy 回顾我们都学过那些函数?一般式是什么?你能回顾我们都学过那些函数?一般式是什么?你能说出他们命名的原因吗?说出他们命名的原因吗?一次函数:一次函数: 反比例函数:反比例函数: 二次函数:二次函数:可以发现,这些函数的名称都反映了函数解析式可以发现,这些函数的名称都反映了函数解析式与自变量的关系与自变量的关系其中包括正比例函其中包括正比例函数:数: y=kx(k0).1一个圆柱的高等于底面半径,写出它的表面一个圆柱的高等于底面半径,写出它的表面积积S与半径与半径r之间的关系式之间的关系式2n支球队参加比赛,每两队之间进行一场比支球队参加比赛,每两队之间进行一场比赛写出比赛的场次数赛写出比赛的场次数m与球队数与球队数n之间的关系式之间的关系式22224Srr rr rr 每个球队都要跟(每个球队都要跟(n-1)支球队进行比赛)支球队进行比赛,因此要进行因此要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论