七年级数学规律经典题_第1页
七年级数学规律经典题_第2页
七年级数学规律经典题_第3页
七年级数学规律经典题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用.绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算: 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成,可利

2、用通项,把每一项都做如此变形,问题会迎刃而解.解 原式= = = =例2 已知有理数a、b、c在数轴上的对应点分别为A、B、C(如右图).化简. 分析 从数轴上可直接得到a、b、c的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0 所以,= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算: 分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,

3、问题会变得很简便.解 原式= 例4 计算:2-22-23-24-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-218+219(-1+2) =2-22-23-24-218+219=2-22-23-24-217+218(-1+2)=2-22-23-24-217+218

4、=2-22+23=6【核心练习】1、已知ab-2与b-1互为相反数,试求:的值. (提示:此题可看作例1的升级版,求出a、b的值代入就成为了例1.)2、代数式的所有可能的值有( )个(2、3、4、无数个)字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_ 分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,

5、可以用“特殊值法”,取y=0,由3x-6y-5=0,可得,把x、y的值代入2x-4y+6可得答案.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得所以2x-4y+6=2(x-2y)+6=例2已知代数式 ,其中n为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 . 分析 当x=1时,可直接代入得到答案.但当x=-1时,n和(n-1)奇偶性怎么确定呢?因n和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,=3当x=-1时,=1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)

6、+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25752=5625= ,852=7225= (1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n(n+1)+25(3) 20052=100

7、5;200(200+1)+25=4020025例4如图是一个三角形,分别连接这个三角形三边的中点得到图,再分别连接图中间小三角形三边的中点,得到图.S表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n表示S的公式. 分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13 (2)可列表找规律: n123nS1594(n-1)+1S的变化过程11+4=51+4+4=91+4+4+4=4(n-1)+1 所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:1,填空:第11,12,13三个数分别是 ,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论