23 圆锥曲线的参数方程_第1页
23 圆锥曲线的参数方程_第2页
23 圆锥曲线的参数方程_第3页
23 圆锥曲线的参数方程_第4页
23 圆锥曲线的参数方程_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程1.了解双曲线、抛物线的参数方程.2.理解椭圆的参数方程及其应用.(重点)3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点)基础初探1.椭圆的参数方程(1)椭圆1的参数方程为, 0t2.(2)若椭圆的中心不在原点而在点M0(x0,y0),相应的椭圆的参数方程为, 0t2.2.双曲线的参数方程双曲线1的参数方程为.3.抛物线的参数方程抛物线y22px的参数方程是(tR,t为参数).思考探究1.椭圆的参数方程中,参数是OM的旋转角吗?【提示】椭圆的参数方程(为参数)中的参数不是动点M

2、(x,y)的旋转角,它是点M所对应的圆的半径OA(或OB)的旋转角,称为离心角,不是OM的旋转角.2.双曲线的参数方程中,参数的三角函数sec 的意义是什么?【提示】sec ,其中0,2)且,.3.类比y22px(p0),你能得到x22py(p0)的参数方程吗?【提示】(p0,t为参数,tR).自主测评1.参数方程(为参数)化为普通方程为()A.x21B.x21C.y21D.y21【解析】易知sin x,cos ,x21.【答案】A2.方程(为参数,ab0)表示的曲线是()A.圆B.椭圆C.双曲线D.双曲线的一部分【解析】由cos xa,cos ,代入ybcos ,得xyab,又由ybcos

3、知,y|b|,|b|,曲线应为双曲线的一部分.【答案】D3.已知点M(3,m)在以F为焦点的抛物线(t为参数)上,则|MF|等于()A.1 B.2 C.3D.4【解析】由得,即y24x,p2.|MF|3314.【答案】D4.点P(x,y)在椭圆y21上,则xy的最大值为_.【解析】由已知可得椭圆的参数方程为(为参数),则xy2cos sin sin()(tan 2),(xy)max.【答案】质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 类型一椭圆的参数方程及应用将参数方程(为参数)化为普通方程,并判断方程表示曲线的焦点坐标

4、.【导学号:62790012】【精彩点拨】根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【尝试解答】由得两式平方相加,得1.a5,b3,c4.因此方程表示焦点在x轴上的椭圆,焦点坐标为F1(4,0)和F2(4,0).椭圆的参数方程(为参数,a,b为常数,且ab0)中,常数a、b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.再练一题1.若本例的参数方程为(为参数),则如何求椭圆的普通方程和焦点坐标?【解】将化为,两式平方相加,得1.其中a5,b3,c4.所以方程的曲线表示焦点为F1(0,4)与F2(0,4)的椭圆.已知曲线C1:(t为参数),曲线C2:1.(1)

5、化C1为普通方程,C2为参数方程;并说明它们分别表示什么曲线?(2)若C1上的点P对应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:x2y70距离的最小值.【精彩点拨】(1)参数方程与普通方程互化;(2)由中点坐标公式,用参数表示出点M的坐标,根据点到直线的距离公式得到关于的函数,转化为求函数的最值.【尝试解答】(1)由,得,曲线C1:(x4)2(y3)21,C1表示圆心是(4,3),半径是1的圆.曲线C2:1表示中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为(为参数).(2)依题设,当t时,P(4,4);且Q(8cos ,3sin ),故M(24cos

6、,2sin ).又C3为直线x2y70,M到C3的距离d|4cos 3sin 13|5cos()13|,从而当cos ,sin 时,d取得最小值.1.从第(2)问可以看出椭圆的参数方程在解题中的优越性.本题易错点主要有:一是在第(1)问中,不能将圆的参数方程化为普通方程;二是在第(2)问中对绝对值的函数形式变形不对或认为cos()1时取最小值,从而得出错误结论.2.第(2)问设计十分新颖,题目的要求就是求动点M的轨迹上的点到直线C3距离的最小值,这个最小值归结为求关于参数的函数的最小值.再练一题2.已知点P是椭圆y21上任意一点,求点P到直线l:x2y0的距离的最大值.【解】因为P为椭圆y21

7、上任意一点,故可设P(2cos ,sin ),其中0,2).又直线l:x2y0.因此点P到直线l的距离d.所以,当sin()1,即时,d取得最大值.类型二双曲线参数方程的应用求证:双曲线1(a0,b0)上任意一点到两渐近线的距离的乘积是一个定值.【精彩点拨】设出双曲线上任一点的坐标,若注意到三角函数有利于三角变换,可利用双曲线的参数方程简化运算.【尝试解答】由双曲线1,得两条渐近线的方程是:bxay0,bxay0,设双曲线上任一点的坐标为(asec ,btan ),它到两渐近线的距离分别是d1和d2,则d1d2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中

8、点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec2 tan2 1的应用.再练一题3.已知圆C:x2(y2)21上一点P,与双曲线x2y21上一点Q,求P,Q两点距离的最小值.【解】双曲线x2y21的参数方程为则Q(sec ,tan ),又圆心C(0,2),则|CQ|2sec2 (tan 2)2(tan2 1)(tan 2)22(tan 1)23,当tan 1,即时,|CQ|2取最小值3,此时有|CQ|min.又因为|PC|1,所以|PQ|min1.类型三抛物线的参数方程设抛物线y22px的准线为l,焦点为F,顶点为O,P为抛物线上任一点,PQl于Q,求QF与OP的交点M的

9、轨迹方程.【精彩点拨】解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【尝试解答】设P点的坐标为(2pt2,2pt)(t为参数),当t0时,直线OP的方程为yx,QF的方程为y2t(x),它们的交点M(x,y)由方程组确定,两式相乘,消去t,得y22x(x),点M的轨迹方程为2x2pxy20(x0).当t0时,M(0,0)满足题意,且适合方程2x2pxy20.故所求的轨迹方程为2x2pxy20.1.抛物线y22px(p0)的参数方程为(t为参数),参数t为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是

10、选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.再练一题4.已知抛物线y22px过顶点两弦OAOB,求以OA、OB为直径的两圆的另一交点Q的轨迹.【解】设A(2pt,2pt1),B(2pt,2pt2),则以OA为直径的圆的方程为x2y22ptx2pt1y0,以OB为直径的圆方程为x2y22ptx2pt2y0,t1,t2为方程2pxt22ptyx2y20的两根.t1t2.又OAOB,t1t21,x2y22px0.另一交点Q的轨迹是以(p,0)为圆心,p为半径的圆.真题链接赏析(教材P46习题23T1)设直线的参数方程为它与椭圆1的交点为A和B,求线段AB的长.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.【命题立意】知识:考查直线与椭圆的参数方程、参数方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论