圆锥曲线的定义_第1页
圆锥曲线的定义_第2页
圆锥曲线的定义_第3页
圆锥曲线的定义_第4页
圆锥曲线的定义_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥曲线的定义、性质和方程高考在考什么【考题回放】1已知AB为过抛物线y2=2px焦点F的弦, 则以AB为直径的圆与抛物线的准线(B)A相交 B相切 C相离 D与p的取值有关2 07年(江苏理)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为 ( A )A B C D3点P(a,b)是双曲线x2-y2=1右支上一点,且P到渐近线距离为,则a+b=(B )A、-B、C、-2D、2 407年(湖南)设F1 、F2分别是椭圆()的左、右焦点,若在其右准线上存在P使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( D )A B C D507年

2、(湖北理)双曲线的左准线为l,左焦点和右焦点分别为F1 、F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于 ( A ) A BC D6(07全国一)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是( C)A4 B C D87(福建理)以双曲线的右焦点为圆心,且与其渐近线相切的圆方程是 ( A )Ax2+y2-10x+9=0Bx2+y2-10x+16=0 Cx2+y2+10x+16=0Dx2+y2+10x+9=08(07辽宁)设椭圆上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足,

3、则2高考要考什么【热点透析】一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:P| |PF1|+|PF2|=2a, (2a>|F1F2|)。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即P| |PF1|-|PF2|=2a, (2a<|F1F2|)。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 二、圆锥曲线的方程。 1.椭圆:(a>b&g

4、t;0)或(a>b>0)(其中,a2=b2+c2) 2.双曲线:(a>0, b>0)或(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质 知识要点:1.椭圆:(a>b>0) (1)范围:|x|a,|y|b (2)顶点:(±a,0),(0,±b) (3)焦点:(±c,0) (4)离心率:e=(0,1) (5)准线:2.双曲线:(a>0, b>0) (1)范围:|x|a, yR (2)顶点:(±

5、;a,0) (3)焦点:(±c,0) (4)离心率:(1,+) (5)准线:(6)渐近线:3.抛物线:y2=2px(p>0) (1)范围:x0, yR (2)顶点:(0,0) (3)焦点:(,0)(4)离心率:e=1 (5)准线:x=-主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程)。突破重难点【例1】若F1、F2为双曲线的左、右焦点,O为坐标原点,点P在双曲线的左支上,点M在双曲线的右准线上,且满足:,则该双曲线的离心率为( )ABCD3解:由知四边形F1OMP是平行四边形,又知OP平分F1OM,即F1OMP是菱形,设|OF1|=

6、c,则|PF1|=c. 又|PF2|-|PF1|=2a, |PF2|=2a+c,由双曲线的第二定义知,且e>1,e=2,故选C.【例2】(06上海春)学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、 为顶点的抛物线的实线部分,降落点为. 观测点同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在轴上方时,观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?解:(1)设曲线方程为, 由题意可知,. . 曲线方程为. (2)设变轨

7、点为,根据题意可知得 ,或(不合题意,舍去). . 得 或(不合题意,舍去). 点的坐标为,.答:当观测点测得距离分别为时,应向航天器发出指令. 图1【例3】如图1,已知A、B、C是长轴为4的椭圆上三点,点A是长轴的一个顶点,BC过椭圆中心O,且,。(1)建立适当的坐标系,求椭圆方程;(2)如果椭圆上两点P、Q使直线CP、CQ与x轴围成底边在x轴上的等腰三角形,是否总存在实数l使?请给出证明。解:(1)以O为原点,OA所在的直线为x轴建立如图直角坐标系,则A(2,0),椭圆方程可设为。而O为椭圆中心,由对称性知|OC|=|OB|又,所以ACBC又,所以|OC|AC|,所以AOC为等腰直角三角形

8、,所以点C坐标为(1,1)。将(1,1)代入椭圆方程得,则椭圆方程为。(2)由直线CP、CQ与x轴围成底边在x轴上的等腰三角形,设直线CP的斜率为k,则直线CQ的斜率为k,直线CP的方程为y-1=k(x-1),直线CQ的方程为y-1=-k(x-1)。由椭圆方程与直线CP的方程联立,消去y得 (1+3k2)x2-6k(k-1)x+3k2-6k-1=0因为C(1,1)在椭圆上,所以x1是方程的一个根,于是 同理这样, 又B(1,1),所以,即kAB=kPQ。所以PQAB,存在实数l使。【例4】如图,直线l1和l2相交于点M,l1 l2,点Nl1以A、B为端点的曲线段C上的任一点到l2的距离与到点N

9、的距离相等若AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6建立适当的坐标系,求曲线C的方程解法一:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点依题意知:曲线段C是以点N为焦点,以l2为准线的抛线段的一段,其中A、B分别为C的端点设曲线段C的方程为y2=2px (p0),(xAxxB,y0),其中xA,xB分别为A,B的横坐标,P=|MN|所以 M (,0),N (,0) 由 |AM|=,|AN|=3得(xA)22PxA=17, (xA)22PxA=9 由、两式联立解得xA=,再将其代入式并由p0解得或因为AMN是锐角三角形,所以xA,故舍去 P=4,xA=1由点B在曲线段C上,得xB=|BN|=4综上得曲线段C的方程为y2=8x (1x4,y0)解法二:如图建立坐标系,分别以l1、l2为x、y轴,M为坐标原点作AEl1,ADl2,BFl2,垂足分别为E、D、F设 A (xA,yA)、B (xB,yB)、N (xN,0)依题意有xA=|ME|=|DA|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论