全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等差数列教学目的:1明确等差数列的定义,掌握等差数列的通项公式;2会解决知道中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式教学难点:等差数列的性质教学过程:引入: 5,15,25,35, 和 3000,2995,2990,2985,请同学们仔细观察一下,看看以上两个数列有什么共同特征?共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等-应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字等差数列二、讲解新课: 1等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) 公差d一定是由后项减前项所得,而不能用前项减后项来求;对于数列,若=d (与n无关的数或字母),n2,nN,则此数列是等差数列,d 为公差2等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:由此归纳等差数列的通项公式可得:已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项如数列1,2,3,4,5,6; (1n6)数列10,8,6,4,2,; (n1)数列 (n1)由上述关系还可得:即:则:=即的第二通项公式 d=如:三、例题讲解例1 求等差数列8,5,2的第20项 -401是不是等差数列-5,-9,-13的项?如果是,是第几项?解:由 n=20,得由 得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得成立解之得n=100,即-401是这个数列的第100项例2 在等差数列中,已知,求,解法一:,则 解法二: 小结:第二通项公式 例3将一个等差数列的通项公式输入计算器数列中,设数列的第s项和第t项分别为和,计算的值,你能发现什么结论?并证明你的结论 解:通过计算发现的值恒等于公差证明:设等差数列的首项为,末项为,公差为d,-得 小结:这就是第二通项公式的变形,几何特征,直线的斜率例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度解:设表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:=33, =110,n=12,即10=33+11 解得: 因此,答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.例5 已知数列的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么? 分析:由等差数列的定义,要判定是不是等差数列,只要看(n2)是不是一个与n无关的常数解:当n2时, (取数列中的任意相邻两项与(n2)为常数是等差数列,首项,公差为p注:若p=0,则是公差为0的等差数列,即为常数列q,q,q,若p0, 则是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.数列为等差数列的充要条件是其通项=p n+q (p、q是常数)称其为第3通项公式判断数列是否是等差数列的方法是否满足3个通项公式中的一个四、练习:1.(1)求等差数列3,7,11,的第4项与第10项.解:根据题意可知:=3,d=73=4.该数列的通项公式为:=3+(n1)4,即=4n1(n1,nN*)=441=15, =4101=39.(2)求等差数列10,8,6,的第20项.解:根据题意可知:=10,d=810=2.该数列的通项公式为:=10+(n1)(2),即:=2n+12, =220+12=28.评述:要注意解题步骤的规范性与准确性.(3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由.解:根据题意可得:=2,d=92=7.此数列通项公式为:=2+(n1)7=7n5.令7n5=100,解得:n=15, 100是这个数列的第15项.(4)20是不是等差数列0,3,7,的项?如果是,是第几项?如果不是,说明理由. 解:由题意可知:=0, d=3 此数列的通项公式为:=n+, 令n+=20,解得n=因为n+=20没有正整数解,所以20不是这个数列的项.2.在等差数列中,(1)已知=10,=19,求与d;(2)已知=9, =3,求.解:(1)由题意得:, 解之得:.(2)解法一:由题意可得:, 解之得该数列的通项公式为:=11+(n1)(1)=12n,=0解法二:由已知得:=+6d,即:3=9+6d,d=1又=+3d,=3+3(1)=0.课时小结五、小结 通过本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防触电大班安全教育
- 快速做课件教学课件
- 起重机械操作培训
- 颈椎病的运动处方
- 3.3.2盐类水解平衡常数与影响盐类水解的因素 课件高二上学期化学人教版(2019)选择性必修1
- 防意外安全演练
- 细菌性肝脓肿个案护理
- 湿疹性皮炎的护理查房
- 保育老师真辛苦教案反思
- 化简比说课稿
- 心理健康专题课件25心理健康
- 【课件】跨学科实践:制作隔音房间模型人教版物理八年级上册
- 2024-2025学年高二英语选择性必修第二册(译林版)UNIT 4 Grammar and usage教学课件
- 二十届三中全会精神学习试题及答案(100题)
- 《网络存储技术及应用(第2版)》高职全套教学课件
- 义务教育语文课程标准(2022年版)考试题库及答案1
- 2024Growatt 2500-6000MTL-S古瑞瓦特光伏逆变器用户手册
- 2024-2030年中国四足机器人行业市场发展趋势与前景展望战略分析报告
- 消化系统常见疾病课件(完美版)
- 成人重症患者人工气道湿化护理专家共识 解读
- 关于进一步加强路基路面施工质量的通知
评论
0/150
提交评论