高三数学《排列组合二项式》学案:排列组合综合题_第1页
高三数学《排列组合二项式》学案:排列组合综合题_第2页
高三数学《排列组合二项式》学案:排列组合综合题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4课时 排列组合综合题基础过关1解排列组合题中常用的方法有直接法、间接法、两个原理、元素位置分析法、捆绑法、插空法、 枚举法、隔板法、对称法;常用的数学思想主要有分类讨论、思想转化、化归思想、对应思想.2解排列组合综合题一般要遵循以下的两个原则(1)按元素性质进行分类(2)按事情发生的过程进行分步.3处理排列组合综合性问题时一般方法是先取(选)后排,但有时也可以边取(选)边排.4对于有多个约束条件的问题,先应该深入分析每个约束条件,再综合考虑如何分类或分步,但对于综合性较强的问题则需要交叉使用两个原理来解决问题.典型例题例1. 五个人站成一排,求在下列条件下的不同排法种数:(1)甲必须在排头;(2)甲必须在排头,并且乙在排尾;(3)甲、乙必须在两端;(4)甲不在排头,并且乙不在排尾;(5)甲、乙不在两端;(6)甲在乙前;(7)甲在乙前,并且乙在丙前;(8)甲、乙相邻;(9)甲、乙相邻,但是与丙不相邻;(10)甲、乙、丙不全相邻解析:(1)特殊元素是甲,特殊位置是排头;首先排“排头”有种,再排其它4个位置有种,所以共有:=24种(2)甲必须在排头,并且乙在排尾的排法种数:=6种(3)首先排两端有种,再排中间有种,所以甲、乙必须在两端排法种数为:=12种(4)甲不在排头,并且乙不在排尾排法种数为:2+=78种(5)因为两端位置符合条件的排法有种,中间位置符合条件的排法有种,所以甲、乙不在两端排法种数为=36种(6)因为甲、乙共有2!种顺序,所以甲在乙前排法种数为:2!=60种(7)因为甲、乙、丙共有3!种顺序,所以甲在乙前,并且乙在丙前排法种数为:3!=20种(8)把甲、乙看成一个人来排有种,而甲、乙也存在顺序变化,所以甲、乙相邻排法种数为=48种(9)首先排甲、乙、丙外的两个有,从而产生3个空,把甲、乙看成一个人与丙插入这3个空中的两个有,而甲、乙也存在顺序变化,所以甲、乙相邻,但是与丙不相邻排法种数为=24种(10)因为甲、乙、丙相邻有,所以甲、乙、丙不全相邻排法种数为=84种变式训练1:某栋楼从二楼到三楼共10级,上楼只许一步上一级或两级,若规定从二楼到三楼用8步走完,则不同的上楼方法有( )A45种B36种 C28种D25种解:C. 8步走10级,则其中有两步走两级,有6步走一级一步走两级记为a,一步走一级记为b,所求转化为2个a和6个b排成一排,有多少种排法故上楼的方法有C28种;或用插排法例2. (1) 某校从8名教师中选派4名教师同时去4个远地区支教(每地1人),其中甲和乙不同去,甲和丙只能事去或同不去,则不同的选派方案菜有多少处?(2) 5名乒乓选手的球队中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有多少种?解:(1)分类:第一为甲丙都去,第二类不去共有种(2)分类:第一类两名老队员都去,第二类去一名老队员共有种变式训练2:某班新年联欢会原定的六个节目已安排成节目单,开演前又增加了三个新节目,如果将这三个节目插入原来的节目单中,那么不同的插法种数是( )A504B210 C336D120 解:A504 故选A 例3. 已知直线ax+by+c=0中的系数a,b,c是从集合-3,-2,-1,0,1,2,3中取出的三个不同的元素,且该直线的倾斜角为锐角,请问这样的直线有多少条?解:首先把决定“直线条数”的特征性质,转化为对“a,b,c”的情况讨论。设直线的倾斜角为,并且为锐角。则tan=0,不妨设ab,那么b0当c0时,则a有3种取法,b有3种取法,c有4种取法,并且其中任意两条直线不重合,所以这样的直线有334=36条当c=0时, a有3种取法,b有3种取法, 其中直线:3x-3y=0,2x-2y=0,x-y=0重合,所以这样的直线有33-2=7条故符合条件的直线有7+36=43条变式训练3:将5名大学生毕业生分配到某公司所属的三个部门中去,要求每个部门至少分配一人,则不同的分配方案共有_种.解: 例4. 从集合1,2,3,20中任选3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?解:a,b,c a,b,c成等差数列 要么同为奇数,要么同为偶数,故满足题设的等差数列共有AA180(个)变式训练4:某赛季足球比赛中的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一球 队打完15场,积33分,若不考虑顺序,该队胜负平的情况共有多少种?解:设该队胜负平的情况是:胜x场,负y场,则平15(xy)场,依题意有:x9 。故有3种情况,即胜、负、平的场数是:9,0,6;10,2,3;11,4,0小结归纳1排列组合应用题的背景丰富无特定的模式和规律可循,背景陌生时,必须认真

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论