




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
快乐学习,尽在中小学教育网圆锥曲线中重点问题的求解策略与方法尹建堂圆锥曲线中的几个重点问题久考不衰,且常考常新,因此,掌握其求解的基本策略与方法是至关重要的。一. 求曲线方程问题求曲线方程问题的基本形式有两种:一是已知曲线的形状与位置关系求曲线方程,即通常所说的“求曲线方程”问题,求解的基本策略是:根据题设的“定位”条件,合理选择曲线方程形式,根据“定量”条件利用待定系数法建立关于特征参数(a、b、c、e、p)的方程(组),解出有关参数,得到所求曲线方程。二是题设条件给出了点的运动规律,但难以判断曲线类型和方程的具体形式,即通常所说的“求轨迹方程”问题,求解的基本策略是:分析清楚动点运动的基本规律(动点所满足的几何条件),把该条件坐标化,使条件坐标化的常用方法有定义法、直接法、代点法、转移法、参数法、向量法等。例1. 如图1所示,抛物线的准线和焦点分别是双曲线的右准线和右焦点,直线与抛物线及双曲线在第一象限分别交于A、B两点,且A为OB中点。图1(1)当时,求双曲线渐近线的斜率;(2)在(1)的条件下,若双曲线的一条渐近线在y轴上截距为,求抛物线和双曲线方程。分析:(1)注意,故需求出e;(2)由题意知双曲线方程为根据已知条件利用特征参数a、b、c、p的关系可获解解:(1)由,得点A(p,)或A()(舍去)由A是OB的中点,得点B(2p,)则,且点B到准线的距离为由离心率及双曲线定义,得:(2)依题意设双曲线方程为,则双曲线的一条渐近线方程为,由渐近线在y轴上截距为,得,从而知双曲线的半焦距c4。由,得所求双曲线方程为所求抛物线方程为评注:圆锥曲线中的特征参数a、b、c、e、p(焦点到相应准线的距离)及其间的关系:(椭圆取“”,双曲线取“”),反映了圆锥曲线的本质属性,且与坐标系的选取无关,在解决圆锥曲线的诸多问题中起着十分重要的作用。二. 直线与圆锥曲线位置关系问题求解的基本策略是,将其转化为直线与圆锥曲线方程的方程组的解的问题,进而转化为一元二次方程的实根问题,因而判别式、韦达定理、弦长公式、焦半径公式的应用,以及设而不求、整体代入、数形结合的思想方法技巧在这里起着极为重要的作用。例2. 直线与双曲线相交于不同两点A、B。(1)以AB为直径的圆恰好过原点,求k的值。(2)是否存在k,使A、B两点关于直线对称?若存在,求出k值;若不存在,请说明理由。分析:(1)所给圆过原点的条件为(C为AB中点),将其转化为k的方程;(2)用假设法求解。解:(1)将代入,消去y,得:依题意知,由,得或或设A(x1,y1),B(x2,y2),AB中点C(x0,y0),由韦达定理,得于是即C()因以AB为直径的圆过原点,则在RtAOB中,由两点距离公式及弦长公式,得:化简,得,解得或(舍去)(2)假设存在k,使A、B关于直线对称,则直线垂直平分线段AB,于是且AB中点在直线上。由与联立,消去y,得:由韦达定理、中点公式,可得AB中点C()显然点C不在直线上,故满足条件的k不存在。评注:(1)中要注意圆锥曲线与直线方程联立得到相应的一元二次方程的二次项系数,对它们交点个数的影响;(2)属探索型问题,也是高考中的常见题型,基本解法有假设法、反证法。三. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,当题中的条件和结论体现出一种明显的函数关系时,可通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:一元二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。例3. 已知O为坐标原点,A、B为抛物线上的点,设,试求m的最小值。图2分析:设AB与x轴交点为M(t,0),则可根据题设条件利用向量数量积建立目标函数。解:如图2,设AB交x轴于点M(t,0),A(x1,y1),B(x2,y2)。当AB与x轴斜交时,设AB:由,得当轴时,上面结论仍成立。由已知条件得当tp时,评注:选取自变量t是关键,这是一道立意新颖、涉及知识点多且难度适中的好题。四. 参数范围问题求解的基本策略是构建以待定参数为主元的关系式。常用方法有:不等式法(列出关于待定参数的不等式组,解得待定参数的范围),函数法。例4. 如图3,抛物线的一段与椭圆的一段围成封闭图形,点N(1,0)在x轴上,又A、B两点分别在抛物线及椭圆上,且AB/x轴,求NAB的周长l的取值范围。图3分析:利用l与抛物线的准线和椭圆右准线之间的距离关系是求解的关键。解:易知N为抛物线的焦点,又为椭圆的右焦点,抛物线的准线,椭圆的右准线,过A作于C,过B作于D,则C、A、B、D在同一条与x轴平行的直线上。由,得抛物线与椭圆的交点M的横坐标而NAB的周长,即,即l的取值范围为(,4)我的大学爱情观1、什么是大学爱情:大学是一个相对宽松,时间自由,自己支配的环境,也正因为这样,培植爱情之花最肥沃的土地。大学生恋爱一直是大学校园的热门话题,恋爱和学业也就自然成为了大学生在校期间面对的两个主要问题。恋爱关系处理得好、正确,健康,可以成为学习和事业的催化剂,使人学习努力、成绩上升;恋爱关系处理的不当,不健康,可能分散精力、浪费时间、情绪波动、成绩下降。因此,大学生的恋爱观必须树立在健康之上,并且树立正确的恋爱观是十分有必要的。因此我从下面几方面谈谈自己的对大学爱情观。2、什么是健康的爱情:1) 尊重对方,不显示对爱情的占有欲,不把爱情放第一位,不痴情过分;2) 理解对方,互相关心,互相支持,互相鼓励,并以对方的幸福为自己的满足; 3) 是彼此独立的前提下结合;3、什么是不健康的爱情:1)盲目的约会,忽视了学业;2)过于痴情,一味地要求对方表露爱的情怀,这种爱情常有病态的夸张;3)缺乏体贴怜爱之心,只表现自己强烈的占有欲;4)偏重于外表的追求;4、大学生处理两人的在爱情观需要三思:1. 不影响学习:大学恋爱可以说是一种必要的经历,学习是大学的基本和主要任务,这两者之间有错综复杂的关系,有的学生因为爱情,过分的忽视了学习,把感情放在第一位;学习的时候就认真的去学,不要去想爱情中的事,谈恋爱的时候用心去谈,也可以交流下学习,互相鼓励,共同进步。2. 有足够的精力:大学生活,说忙也会很忙,但说轻松也是相对会轻松的!大学生恋爱必须合理安排自身的精力,忙于学习的同时不能因为感情的事情分心,不能在学习期间,放弃学习而去谈感情,把握合理的精力,分配好学习和感情。3、 有合理的时间;大学时间可以分为学习和生活时间,合理把握好学习时间和生活时间的“度”很重要;学习的时候,不能分配学习时间去安排两人的在一起的事情,应该以学习为第一;生活时间,两人可以相互谈谈恋爱,用心去谈,也可以交流下学习,互相鼓励,共同进步。5、大学生对爱情需要认识与理解,主要涉及到以下几个方面:(1) 明确学生的主要任务“放弃时间的人,时间也会放弃他。”大学时代是吸纳知识、增长才干的时期。作为当代大学生,要认识到现在的任务是学习学习做人、学习知识、学习为人民服务的本领。在校大学生要集中精力,投入到学习和社会实践中,而不是因把过多的精力、时间用于谈情说爱浪费宝贵的青春年华。因此,明确自己的目标,规划自己的学习道路,合理分配好学习和恋爱的地位。(2) 树林正确的恋爱观提倡志同道合、有默契、相互喜欢的爱情:在恋人的选择上最重要的条件应该是志同道合,思想品德、事业理想和生活情趣等大体一致。摆正爱情与学习、事业的关系:大学生应该把学习、事业放在首位,摆正爱情与学习、事业的关系,不能把宝贵的大学时间,锻炼自身的时间都用于谈情说有爱而放松了学习。 相互理解、相互信任,是一份责任和奉献。爱情是奉献而不时索取,是拥有而不是占有。身边的人与事时刻为我们敲响警钟,不再让悲剧重演。生命只有一次,不会重来,大学生一定要树立正确的爱情观。(3) 发展健康的恋爱行为 在当今大学校园,情侣成双入对已司空见惯。抑制大学生恋爱是不实际的,大学生一定要发展健康的恋爱行为。与恋人多谈谈学习与工作,把恋爱行为限制在社会规范内,不致越轨,要使爱情沿着健康的道路发展。正如马克思所说:“在我看来,真正的爱情是表现在恋人对他的偶像采取含蓄、谦恭甚至羞涩的态度,而绝不是表现在随意流露热情和过早的亲昵。”(4) 爱情不是一件跟风的事儿。很多大学生的爱情实际上是跟风的结果,是看到别人有了爱情,看到别人幸福的样子(注意,只是看上去很美),产生了羊群心理,也就花了大把的时间和精力去寻找爱情(5) 距离才是保持爱情之花常开不败的法宝。爱情到底需要花多少时间,这是一个很大的问题。有的大学生爱情失败,不是因为男女双方在一起的时间太少,而是因为他们在一起的时间太多。相反,很多大学生恋爱成功,不是因为男女双方在一起的时间太少,而是因为他们准确地把握了在一起的时间的多少程度。(6) 爱情不是自我封闭的二人世界。很多人过分的活在两人世界,对身边的同学,身边好友渐渐的失去联系,失去了对话,生活中只有彼此两人;班级活动也不参加,社外活动也不参加,每天除了对方还是对方,这样不利于大学生健康发展,不仅影响学习,影响了自身交际和合作能力。总结:男女之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023三年级数学上册 二 快乐大课间-两位数乘一位数 信息窗3 呼啦圈表演 求比一个数的几倍多(或少)几的数是多少教学设计 青岛版六三制
- Unit7 Natural World(教学设计)-2023-2024学年剑桥国际少儿英语Kid's Box5五年级下册
- 七年级地理上册 第三章 天气和气候 第3节 降水的变化与分布 第2课时 降水的分布教学设计 (新版)新人教版
- 老年病人围手术期护理
- 海底世界小学语文
- 1 场景歌教学设计-2024-2025学年二年级上册语文统编版
- 7《不甘屈辱 奋勇抗争》第二课时 教学设计-2023-2024学年道德与法治五年级下册统编版
- 七年级生物下册 4.11.2尿的形成和排出教学设计(新版)北师大版
- 初中教学工作计划(10篇)
- 2024秋五年级英语上册 Unit 5 There is a big bed课时6 Read and write-Let's wrap it up教学设计 人教PEP
- 无人机创客实验室方案
- 2024年四川省乐山市中考地理·生物合卷试卷真题(含答案)
- JT-T-155-2021汽车举升机行业标准
- 2024年河南农业职业学院单招职业适应性测试题库各版本
- 人事档案转递通知单
- 《离散数学》试题带答案
- 2024年江苏省昆山市、太仓市、常熟市、张家港市中考适应性考试化学试卷
- 中建项目商务管理手册
- 四川省建设工程质量检测见证取样手册
- 2024年全能型供电所岗位知识考试题库(600题)
- SLT278-2020水利水电工程水文计算规范
评论
0/150
提交评论