自动剪板机机械部分计算_第1页
自动剪板机机械部分计算_第2页
自动剪板机机械部分计算_第3页
自动剪板机机械部分计算_第4页
自动剪板机机械部分计算_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1 电动机功率的选择电动机的容量选择的是否合适,对电动机的正常工作和经济性都有影响。容量选的过小,不能保证工作机的正常的工作或使电动机因过载而过早的损坏;而容量选的过大,则电动机的价格较高,能力又不能充分利用,而且由于电动机经常不满载运行,其效率和功率因数都较低,增加电能消耗而造成能源的浪费。该剪板机的剪切力为10吨,根据诺沙里公式5:= (4-1)式中 剪切力 =101039.8=98000N 被剪板料强度极限,实际中的板料=500N/mm 被剪板料延伸率,=25% 被剪板料厚度 上刀刃倾斜=2 被剪部分弯曲力系数,=0.95 前刃侧向间隙相对值,=0.083 压具影响系数x=7.7把已

2、知数据代入式(4-1) 解得:=4.63mm根据表8-2-2,Q11型剪板机技术参数1,类比实习时工厂的样机,选取电动机的功率为5.5kW。转速的确定:由于传动由皮带和齿轮组成的。按推荐的传动副传动比较合理的范围,取三角带传动比=24。二级圆柱齿轮减速器传动比=840,则总传动比合理范围为 =16160,则电动机转速可选范围为: = =(16160) =4804800r/min查表19.1 Y系列三相异步电动机的技术数据6,选取Y132-M2-6型电动机比较合适,其技术参数如下:功率为5.5kW,级数为6,满载时的电流、转速、效率分别为12.6A、960r/min、85.3%。1.2 计算传动

3、装置的运动和动力参数1.2.1计算传动装置的合理传动比总传动比 = (4-2)=式中 三角带传动比圆柱齿轮传动比取=4 =1.2.2计算运动和动力参数1.计算各轴转速 = r/min= r/min2.计算各轴的功率查得4各部件传动效率为: 圆柱齿轮:0.940.96 =0.95 三角带传动:0.940.96 =0.955 轴承(每对):0.970.99 =0.98 则总传递效率为:= = = =5.15kW= =4.79kW3.各轴转矩 = 式中 电动机转矩;电动机功率;满载转速6; = = Nm =Nm= = Nm= = Nm= Nm第2章 带传动的设计及计算在同样的张紧力下,V带传动较平带

4、传动能产生更大的摩擦力,V带传动允许的传动比较大,结构简单较紧凑,造价低廉,传动平稳以及缓冲吸振等优点4。2.1 确定计算功率 = (5-1) =kW 式中 传动的额定功率()工作情况系数查表8-64,载荷变动较大,软启动每天工作时间小于10小时,取=1.2。5.2 选择带型根据=6.6kW和主动带轮(小带轮)转速= r/min,查图8-84中选定A型V带。2.3 确定小带轮的基准直径2.3.1初选小带轮的基准直径查参考文献4取主动轮基准直径=mm。2.3.2验算带的速度= = =m/s 由于过小,表示所选的过小,这将使所需要的有效拉力过大,即所需要的跟数过多,于是带轮的宽度,轴径及轴承的尺寸

5、都要随之增大。 取=mm= =m/s =m/s2.3.3计算从动轮的基准直径=640mm并按照V带轮的基准直径系列进行圆整,圆整后=640mm2.4 确定中心距和带轮的基准长度由于中心距未给出,可根据传动的结构需要初步中心距取 代入=mm , =mmmm取=mm =mm,根据带传动的几何关系,按下式计算所需带的基准长度 + + (5-2)mm=mm由参考文献7表33.19取=mm,由于V带的中心距一般是可以调整的,故采用下式进行近似计算=mm=mm 考虑安装调整和补偿预紧力(如带伸长而松弛后的紧张)的需要,中心距的变化范围为=mmmm =mm=mm。 2.5 验算主动轮上的包角 根据对包角的要

6、求,应保证 主动轮上的包角满足要求。2.6 确定带的根数 (5-3)式中 包角系数,查得0.91长度系数,查得1.13单根V带的基本额定功率,查得0.94kW单根V带额定功率的增量,查得0.5kW4代入数据得=根2.7 确定带的预紧力考虑离心力不利的影响,和包角对所需预紧力的影响,单根V带的预紧力为= (5-4)式中 V带单位长度的质量,查得=0.10kg/m=N由于新带容易松弛,所以对非自动张紧的带传动,安装新带时的预紧力应为上述预紧力的1.5倍4。2.8 计算带传动作用在轴上压轴力为了设计安装带轮的轴和轴承,必须确定带传动作用在轴上的力。如果不考虑带的两边的拉力差,则压轴力可以近似的按带的

7、预紧力的合力来计算4,即= 式中: 带的根数 单根带预紧力 主动轮上的包角= N=1437.3N2.9 带轮结构的设计2.9.1小带轮的结构设计1.材料:HT2002.确定带轮的形式由参考文献6得:电机轴=38mm,电机轴伸出长度为E=80mm,且已知小带轮的基准直径=160mm,2.5=2.538mm=95mm2.5300mm所以小带轮采用腹板式结构。带轮的基准直径为160mm,外径=168mm。3.轮槽的尺寸查表8-10 4得带轮的轮槽尺寸如下:轮槽基准宽度=11.0mm基准线上槽深=2.75mm基准线下槽深 =8.7mm槽间距=150.3mm 第一槽对称面至端面的距离=mm最小轮缘厚=6

8、mm轮槽角=38轮槽结构如图5-1所示。图5-1 轮槽结构4.确定小带轮外形尺寸带轮宽: =(5-1)15+210mm=80mm带轮外径:=160+24mm=168mm轮缘外径: =(1.82) =(1.82)38mm=(68.476)mm,取=70mm轮毂长度: 因为=80mm1.5=1.538mm=57mm 所以=(1.52) =(1.52)38mm=(5776)mm,取=60mm。 =(1/7-1/4) =(1/7-1/4)80mm=(11.4320)mm 取=15mm小带轮的结构如图5-2图5-2 小带轮结构2.9.2大带轮的结构设计1、材料:HT2002、确定带轮的结构形式初选大带轮

9、的轴径=35mm,已知大带轮的基准直径=640mm300mm,所以大带轮选用轮辐式结构。43、轮槽尺寸同小带轮。4、轮缘及轮毂的尺寸:带轮宽: =(5-1)15+210mm=80mm带轮外径:=640+24mm=648mm轮毂外径:=(1.82)=(1.82)35mm=(6370)mm,取=70mm轮毂长度:因为=80mm1.5=1.535mm=52.5mm 所以=(1.52) =(1.52)38mm=(5776)mm,取=60mm。 = (5-5)式中: 传递的功率,为5.15kW 带轮的转速,为240r/min 轮辐数,取4=mm=50.8mm=0.8=0.850.8mm=40.6mm=0

10、.4=0.450.8mm=20.3mm=0.8=0.820.3mm=16.2mm=0.2=0.250.8mm=10.2mm=0.2=0.240.6mm=8.1mm大带轮的结构如图5-3图5-3 大齿轮机构第3章 轴的设计 轴是组成机器的主要零件之一。一切做回转运动的传动零件,都必须安装在轴上才能进行运动及动力的传递,轴主要是支撑回转零件及传递运动和动力。轴按照承受载荷的不同,可分为以下三类:(1)转轴 既承受弯矩又承受扭矩。 (2)心轴 只承受弯矩不承受扭矩。 (3)传动轴 只承受扭矩不承受弯矩。按轴线形状的不同,可分为两种:(1)曲轴 通过连杆可以将旋转运动改变为往复直线运动,或作相反的运动

11、变换。(2)直轴 直轴又可按外形分为光轴和阶梯轴4。本次设计的剪板机采用的是直轴。3.1 主动轴设计3.1.1轴的材料轴的材料主要是碳钢和合金钢,钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。由于碳钢比合金钢廉价,对应力集中的敏感性较低,同时也可以用热处理或化学处理的办法提高耐磨性和抗疲劳强度。在载荷一定的情况下,好的材料能提高轴的工作性能及寿命,但同时要考虑到材料的经济性,故采用45号钢,并做调质处理,查参考文献8得 =103126,取=116,=60MP。轴的失效形式:主要有断裂、磨损、超过允许范围的变形和振动等,对于轴的设计应满足下列要求:1. 足够的强度。2. 足够的刚度。3. 振

12、动的稳定性4。3.1.2 轴径的最小许用值根据扭转强度条件计算公式9 (6-1) =116=62.94mm3.1.3确定轴上的零件的装配方案深沟球轴承、套筒和轴端挡圈从轴的左端依次安装,深沟球轴承、套筒、齿轮、轴端挡圈从轴的右侧依次安装。轴承选择6014型深沟球轴承。3.1.4 轴上的零件定位1. 轴向定位轴上的零件是以轴肩、套筒来保证的。2. 周向定位限制轴上零件与轴发生相对转动,本次设计采用键来固定。3.1.5轴各段直径和长度的确定类比工厂样机,确定主轴的各段直径及长度。3.1.6 绘制主轴上零件的装配图及轴的结构图根据以上计算及装配定位要求10,绘制主轴上零件的装配图及轴的结构图如图6-

13、1所示。 1.沉头螺钉 2.套筒 3.深沟球轴承 4.螺钉锁紧挡圈 5.偏心轮 6.大齿轮 7.轴端挡圈图6-1 主轴的机构几装配图3.1.7轴的强度校核计算1.输出轴上的功率P,转速n和转矩T=4.79 kW , =30r/min , =1510.19 Nm2.求大齿轮上所受的力、大齿轮与小齿轮相互作用,依据牛顿第三定律=-,=2204.81/(10010-3)N=4096.2N(d为小齿轮的分度圆直径)= =4096.2tg20N=1490.89N所以=+4096.2N,=-1490.89N轴上曲柄的作用力,由于制动带的作用,传到曲柄上的转矩只有主轴的1/3,作用在双曲柄的径向力,为= /

14、(32)=1510.19/(30.112)N=2288.17N3. 主轴的受力分析主轴的受力如图6-2所示,由图根据物体的平衡条件11可知 已知:=135mm,=1180mm,=135mm,=50mm,=-1490.89N,=2288.17N,=4096.2N解方程组得=141.25N,=-4237.45N,=-2339.58N,=-745.87N=4237.45(135+1180+135)50/(135+1180+135+50)=.08Nmm=2339.58135Nmm=.3 Nmm =2339.58(135+1180)-2288.171180 Nmm =.1 Nmm=2339.58(135

15、+1180+135)-2288.171180-2288.17135 Nmm =.45 Nmm由图3-5可以看出C截面为最危险截面,按第四强度理论9校核=图6-2 主轴的受力分析图=MPa=40.49MPa-1=60MPa 安全3.2 从动轴的设计3.2.1材料选择类比主轴,选用45号钢,调质处理。3.2.2轴径的最小许用值 (6-2)=116mm=32.24mm3.2.3确定轴上零件的装配方案轴承、套筒、皮带轮、轴端挡圈从左端向右依次安装。轴承、套筒、齿轮、轴端挡圈依次从轴的右端向左安装,轴承选择6007型深钩球轴承。3.2.4绘制从动轴上零件的装配图及轴的结构图类似主动轴,传动轴的零件装配及

16、轴的机构如图6-3所示。1.轴端挡圈 2.大带轮 3.套筒 4.深沟球轴承 5.小齿轮图6-3 传动轴的结构及装配图第4章 齿轮设计齿轮传动是机械传动中最重要最常用传动之一,效率高,机构紧凑,工作可靠,寿命长,传动比稳定。缺点是造价高,安装精度高,易磨损4。4.1 选定齿轮类型、精度等级、材料及齿数4.1.1齿轮类型的选择根据设计的传动方案选择直齿圆柱齿轮传动。4.1.2齿轮材料的选择由于机器工作时属于中等冲击,选取大小齿轮的材料均为45Cr(调质),齿面硬度:小齿轮271316HBS,大齿轮为241286HBS,取中间值,则大齿轮为263.5HBS,小齿轮为293.5HBS8。4.1.3选取

17、精度等级 因其表面经过调质处理,故选用8级精度。4.1.4选择齿数选小齿轮齿数为Z1=20,大齿轮齿数Z2=uZ1=820=1605.2 按齿面接触强度设计由设计公式4进行试算,既: 2.23 (7-1)5.2.1确定公式内的各个计算数值1.试选载荷系数=1.32.计算小齿轮传递的转矩=95.5105Nmm=2.049105 Nmm3.选取齿宽系数=0.64.材料的弹性影响系数=189.8MPa5. 接触疲劳强度按齿面硬度查得4大齿轮接触疲劳强度极限=610MPa,小齿轮的接触疲劳强度极限=650MPa6.计算应力循环次数=602401(303008)=1.0368109=0.12961097

18、.接触疲劳强度查得4=1.0, =1.18. 计算接触疲劳许用应力取失效效率为1%,安全系数=1,有=1.0650=650MPa=1.1610=671MPa5.2.2计算1.小齿轮分度圆直径将以上所有数据代入公式(7-1)有d1t2.23 =2.32 =81.016mm2.计算圆周速度= =m/s=1.018m/s3.计算齿宽=0.681.016=48.610mm4.计算齿宽与齿高之比b/h模数 =4.051mm齿高 =2.25=2.254.051mm=8.041mm=48.610/9.115=5.3335.计算载荷系数根据=1.081mm/s,8级精度,查得动载系数=1.1;直齿轮假设100

19、N/mm;由表查得=1.2;=1.5;查得齿向载荷分配系数用内差法得 =1.23,并且=4.44,8级精度,并调质处理,查得弯曲强度计算用的齿向载荷分布系数=1.16;故载荷系数 =1.51.11.21.23=2.43546.按实际的载荷系数校正所算得的分度圆直径 =81.016mm=99.87mm7.计算模数 =mm=4.99mm5.3 按齿根弯曲强度设计由齿根弯曲强度的设计公式4: (7-2)5.3.1确定公式内各计算数值1.弯曲疲劳强度查得8小齿轮的弯曲疲劳强度极限=426MPa。大齿轮的弯曲疲劳强度极限=430MPa。2.弯曲疲劳寿命系数查得=0.88,=0.9。3.计算弯曲疲劳许用应

20、力取弯曲疲劳安全系数 =1.4 由得=267.77MPa=276.4MPa4.载荷系数K =载荷系数 =1.51.11.21.116=2.297。5.计算大、小齿轮的并加以比较=0.01621=0.01422小齿轮的数值大 5.3.2设计计算=3.99mm对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数m的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得模数3.99并就近圆整为标准植m=4mm。按接触强度算得的分度圆直径d1=99.87mm,算出小齿轮齿数=25大齿轮齿

21、数 =825=200 取Z2=2005.4 几何尺寸计算5.4.1计算分度圆直径=254=100mm =2004=800mm5.4.2计算中心距=450mm5.4.3计算齿轮宽度=0.6100=60mm为防止大小齿轮因装配误差产生轴向错位时导致啮合齿宽减小而增大大齿轮的工作载荷,常将小齿轮的齿宽在圆整数值的基础上人为地加宽510mm故取小齿轮的齿宽=65mm大齿轮的齿宽=60mm。5.5 验算=N=4098N= N/mm =102.45N/mm100 N/mm合适。5.6 结构设计及绘制齿轮零件图5.6.1对小齿轮的结构设计计算小齿轮结构参数齿顶高 =41 mm =4mm 齿根高 =4(1+0

22、.25) mm =5mm 齿全高 =12+15mm=27mm 齿顶圆直径 =100+24mm =108mm 齿根圆直径 =100-25mm =90mm 由于小齿轮直径不大,且中间有轴传动,故选用实心结构的齿轮。压力角 =20齿距 =3.144mm =12.56mm 基圆直径 =100cos20mm =93.97mm 基圆齿距 =12.56cos20mm =11.80mm 齿厚 =12.56/2mm =6.28mm 齿槽宽 =12.56/2mm =6.28mm 顶隙 =40.25mm=1.0mm因为小齿轮的齿顶圆直径 =108mm160mm,所以小齿轮可以做成实心结构的齿轮4。小齿轮的结构如图7

23、-1所示。5.6.2对大齿轮的机构设计 1.计算大齿轮结构参数齿顶圆直径 =800+24mm=800mm 齿根圆直径 =800-25mm =790mm 由于大齿轮的齿顶圆直径=790mm在4001000mm之间,所以选用轮辐式结构的齿轮4。图7-1 小齿轮结构图2. 轮辐的设计轮辐数取= 65mm因为大齿轮的材料为铸钢,所以=1.665mm=104mm=(1216)mm 取=15mm=(1518)mm 取=16mm=0.8104mm=52mm 取=52mm=0.852mm=41.6mm 取=41.6mm=52/5mm=10.4mm 取=10.4mm=52/6mm=8.7mm 取=8.7mm=0.552=26mm 取=26mm=97.5=60mm 取=60mm大齿轮如图7-2所示:图 7-2 大齿轮结构图第6章 曲柄滑块机构设计 曲柄滑块机构是曲柄剪板机的典型机构,这一机构将剪板机传动系统的旋转运动转变为滑块的往复运动,实现剪切工艺。同时,机构还具有力的放大作用(即工作载荷大于传动系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论