版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、点和圆的位置关系,圆外的点,圆内的点,圆上的点,平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。,圆的内部可以看成是到圆心的距离小于半径的的点的集合;圆的外部可以看成是 。,到圆心的距离大于半径的点的集合,思考:平面上的一个圆把平面上的点分成哪几部分?,设O 的半径为r,点P到圆心的距离OP=d,则有:,点P在O内,点P在O上,点P在O外,dr,d=r,dr,d,如图,设O 的半径为r,A点在圆内, B点在圆上,C点在圆外,那么,点A在O内,点B在O上,点C在O外,OAr, OBr, OCr,反过来也成立,如果已知点到圆心的距离和圆的半径的关系,就可以判断点和圆的位置关系。
2、,OAr,OB=r,OCr,A,B,C,例:如图已知矩形ABCD的边AB=3厘米,AD=4厘米,(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆上,D在圆外,C在圆外),(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆内,D在圆上,C在圆外),(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆内,D在圆内,C在圆上),练一练,已知AB为O的直径,P为O 上任意一点,则点关于AB的对称点P与O的位置为( ) (A)在O内 (B)在O 外 (C)在O 上 (D)不能确定,c,1、平面上有
3、一点A,经过已知A点的圆有几个?圆心在哪里?,A,无数个,圆心为点A以外任意一点,半径为这点与点A的距离,2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点?,以线段AB的垂直平分线上的任意一点为圆心,以这点到A或B的距离为半径作圆.,无数个。它们的圆心都在线段AB的垂直平分线上。,3、平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?,归纳结论: 不在同一条直线上的三个点确定一个圆。,B,C,经过B,C两点的圆的圆心在线段AB的垂直平分线上.,A,经过A,B,C三点的圆的圆心应该这两条垂直平分线的交点O的位置.,O,经过A,B两点的圆的圆心在线段AB
4、的垂直平分线上.,经过三角形三个顶点可以画一个圆,并且只能画一个,一个三角形的外接圆有几个? 一个圆的内接三角形有几个?,经过三角形三个顶点的圆叫做三角形的外接圆。,三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。,这个三角形叫做这个圆的内接三角形。,三角形外接圆的圆心叫做这个三角形的外心。,想一想,O,分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.,锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.,1、判断下列说法是否正确 (1)任意的一个三角形一定有一个外接圆( ). (2)任意一个圆有且只有一个内接三角形( ) (3)经过三点一定可以确定一个圆( ) (4)三角形的外心到三角形各顶点的距离相等( ),2、若一个三角形的外心在一边上,则此三角形的 形状为( ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形,B,爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的的安全区域,已知这个导火索的长度为18cm,如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度仓储物流租赁管理协议范本2篇
- 个人场地租赁合同(2024版)6篇
- 专线接入服务个性化协议范例2024版A版
- 2024用户服务合同模板
- 二零二五年度特色火锅店租赁合同范本3篇
- 2025年度柴油产品质量保证合同模板4篇
- 2024年规范珠宝玉石市场买卖协议样本版B版
- 2025年度智能公寓租赁管理服务合同标准2篇
- 2025年度餐饮娱乐场地租赁合同范本12篇
- 2025年茶叶深加工项目合作协议4篇
- 三年级数学(上)计算题专项练习附答案
- GB/T 12723-2024单位产品能源消耗限额编制通则
- 2024年广东省深圳市中考英语试题含解析
- GB/T 16288-2024塑料制品的标志
- 麻风病防治知识课件
- 建筑工程施工图设计文件审查办法
- 干部职级晋升积分制管理办法
- 培训机构应急预案6篇
- 北师大版数学五年级上册口算专项练习
- 应急物资智能调配系统解决方案
- 2025年公务员考试时政专项测验100题及答案
评论
0/150
提交评论