




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第22章 一元二次方程,22.2 一元二次方程的解法(一),学习目标,1、理解掌握用直接开平方法解一元二次方程? 2、了解什么是配方法? 3、会用配方法解一元二次方程。,一般地,对于形如x2=a(a0)的方程, 根据平方根的定义,可解得 这种解一元二次方程的方法叫做直接开平方法.,例1.用直接开平方法解下列方程: (1)3x227=0; (2)(2x3)2=7,巩固练习 1,()方程的根是 ()方程的根是 (3) 方程 的根是,2. 选择适当的方法解下列方程: (1)x2 810 (2) x2 50 (3)(x1)2=4 (4)x22 x5=0,X1=0.5, x2=0.5,X13, x23,
2、X12, x21,我们可以先把(+1)看作一个整体,原方程便可 以变形为:,(+1)2=4,现在再运用直接开平方的方法可求得的值。,解:,(1) 移项,得,(+1)2=4, +1=2, 1=1,2=3.,你来试试第(2)题吧!,合作探究,这种方程怎样解?,变形为,的形式(为非负常数),变形为,X24x10,(x2)2=3,把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.,(1)x28x =(x4)2 (2)x24x =(x )2 (3)x2_x 9 =(x )2,填空,配方时, 等式两边同时加上的是一次项系数一半的平方,16,6,3,4,2,想一
3、想,2.如果x2=a(a0),那么x= ;,3.式子 叫完全平方式, 且a22ab+b2 = .,1.如果x2=5,那么x= ;,4.(1) x2+12x+ =(x+6)2; (2)x2-4x+ =(x- )2; (3)x2+8x+ =(x+ )2.,36,4,16,2,4,我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法,1、平方根的意义:,如果x2=a,那么x=,2、完全平方式:式子a22ab+b2叫完全平方式,且a22ab+b2 =(ab)2.,例题讲析:,例:解方程:,x2+8x3=o,分析:将二次项系数化为1后,用配方法解此方程。,解:两边都除
4、以3,得: 移项,得: 配方,得: (方程两边都加上一次项系数一半的平方) 即: 所以:,例2:用配方法解下列方程 (1)x26x=1 (2)x2=65x,用配方法解一元二次方程的步骤:,移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.,(2) x24x3=0,(1) x212x =9,做一做,练习3:用配方法解下列方程:,4. 用配方法说明:不论k取何实数,多项式 k23k5的值必定大于零.,思考:先用配方法解下列方程: (1) x22x10 (2) x22x40 (3) x22x10 然后回答下列问题: (1)你在求解过程中遇到什么问题?你是怎样处理所遇到的问题的? (2)对于形如x2pxq0这样的方程,在什么条件下才有实数根?,谈谈你的收获!,1.一般地,对于形如x2=a(a0)的方程, 根据平方根的定义,可解得 这种解一元二次方程的方法叫做开平方法.,2.把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.,注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.,用配方法解一元二次方程的步骤:,移项:把常数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理导论与护理程序
- 酱香酒知识培训课件
- 糖尿病及护理
- 心脏外科护理手术配合
- 妊娠期糖尿病护理
- 2025年庆八一建军节主题活动方案策划书
- 2025年精神文明建设工作方案
- 吸氧喉罩在气管切开中的护理
- 千聊上上传课程能放
- 教育发展回顾与展望
- 人工智能设计伦理知到智慧树章节测试课后答案2024年秋浙江大学
- 2024年中考语文复习:非连续性文本阅读(含练习题及答案)
- 2024年西藏初中学业水平考试生物卷试题真题(含答案解析)
- 血液净化护理质量控制
- 成人脑室外引流护理-中华护理学会团体 标准
- 2022-2023学年上海市徐汇中学七年级(下)期中语文试卷
- 《促进儿童个性发展之策略研究》17000字(论文)
- 地方导游基础知识电子教案 专题七 学习情境一 陕西省课时教案
- 创伤失血性休克中国急诊专家共识(2023)解读课件
- 项目管理工程师招聘笔试题与参考答案(某大型集团公司)2024年
- 高中文言文实词虚词总集(打印版)
评论
0/150
提交评论