




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,16.3 可化为一元一次方程的分式方程,复习提问,1、什么是一元一次方程?什么是方程的解?,2、解一元一次方程的基本方法和步骤是什么?,3、分式有意义的条件是什么?,4、分式的基本性质是怎样的?,轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.,分析:设轮船在静水中的速度为x千米/时,根据题意,得,这个方程有何特点?,引入问题,想一想,这个方程有何特点?,特征:方程两边的代数式是分式。 或者说未知数在分母上的方程。,分式方程的主要特征: (1)含有分式 (2)分母中含有未知数.,方程 中含有分式,并且分母 中含有未知数,像
2、这样的方程叫做分式方程.,你还能举出一个分式方程吗?,分式方程的概念,判断下列各式哪个是分式方程,(2),(3),(4),(5),(1),(1)、(2)是整式方程.,(3)是分式.,(4)(5)是分式方程,下列方程哪些是分式方程:,探究分式方程的解法,思考:怎样解分式方程呢?,为了解决这个问题,请同学们先思考并回答以下问题: 1)、回顾一下解一元一次方程时是怎么去分母的,从中能否得到一点启发?,2)、有没有办法可以去掉分式方程的分母把它转化为整式方程呢?,试动手解一解方程:,探究分式方程的解法,解:方程两边同乘以(x+3)(x-3),约去分母,得 80(x-3)=60(x+3),解这个整式方程
3、,得 x=21 所以轮船在静水中的速度为21千米/时.,解方程:,解:方程两边同乘以x(x-2),约去分母,得 5(x-2)=7x,解这个整式方程,得 x=-5,上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.,探究分式方程的解法,解方程:,请你动手做一做:,例题讲解与练习,例1解方程:,解:方程两边同乘以(x+1)(x-1),约去分母,得 x+1=2 解这个整式方程,得 x =1,事实上,当x=1时,原分式方程左边和右边的分母(x1)与(x21)都是0,方程中出现的两个分式都没有意义,因此,x=
4、1不是原分式方程的根,应当舍去.,所以原分式方程无解.,在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根. 因此,在解分式方程时必须进行检验.,那么,可能产生“增根”的原因在哪里呢?,探究分式方程的增根原因,探究分式方程的增根原因,对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求.如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,即是原分式方程的增根.,探究
5、分式方程的验根方法,验根的方法 解分式方程进行检验的关键是看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.,1.代入原方程进行检验,2.代入最简公分母进行检验,例题讲解与练习,解:方程两边同乘以x(x-7),约去分母,得 100(x-7)=30 x,解这个整式方程,得 x=10,检验:把 x =10代入 x(x-7),得 10(10-7)0 所以, x=10是原方程的解.,例题讲解与练习,例3解方程:,解:方程两边同乘以x-4,得,检验:把 x = 5 代入 x -4,得x-40,x =
6、5是原方程的解.,解这个整式方程得x = 5,解:方程两边同乘以(x-2)(x+2),得,检验:把x=-2代入 x2-4得x2-4=0,x=-2是增根,从而原方程无解.,解这个整式方程,得x=-2,例3解方程:,例题讲解与练习,(2),注意:分 式方程的 求根过程 不一定是 同解变形, 所以分式 方程一定 要验根!,做一做,解下列分式方程:,判断:,做一做,学习小结,1、你学到了哪些知识?要注意什么问题?,2、在学习的过程 中你有什么体会?,1、什么是分式方程?举例说明 2、解分式方程的一般步骤: a、在方程的两边都乘以最简公分母,约去分母,化为整式方程 b、解这个整式方程 c、验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去 3、解分式方程为什么要进行验根?怎样进行验根?,课堂小结,验根的方法有: 代入原方程检验法和代入最简公分母检验法. (1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。 (2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8红楼春趣教学设计-2023-2024学年五年级下册语文统编版
- 2023六年级英语下册 Unit 1 A family outing第2课时教学设计 湘少版
- 14《圆明园的毁灭》(教学设计)-2024-2025学年统编版语文五年级上册
- Revision of Module 6(教学设计)-2024-2025学年外研版(一起)英语一年级上册
- 2 呼吸与健康生活 教学设计-2024-2025学年科学四年级上册教科版
- 12 我们小点儿声(教学设计)2024-2025学年统编版道德与法治二年级上册
- 三年级体育下册 立定跳远教学设计
- 9 古诗三首《雪梅》(教学设计)-2024-2025学年统编版语文四年级上册
- 九年级化学下册 第八章 常见的酸、碱、盐 8.4 常见的盐教学设计 (新版)粤教版
- 20 《谈创造性思维》(教学设计)九年级语文上册同步备课系列(统编版)
- 安徽省合肥市2025届高三下学期3月二模试题 语文 含解析
- 命案防控讲座课件内容
- 2024年广西职业院校技能大赛中职组《大数据应用与服务》赛项竞赛样题
- 2025年郑州黄河护理职业学院单招职业适应性考试题库带答案
- 9.1日益完善和法律体系课件-2024-2025学年统编版道德与法治七年级下册
- 授权独家代理商合作协议2025年
- PE特种设备焊工理论复习题库(带解析)
- 精准医疗复合手术室
- 《基于三维荧光技术的水环境污染源深度溯源技术规范》
- 危险废物处理应急预案(4篇)
- 江苏省南京市2025届高三第二次联考英语试卷含解析
评论
0/150
提交评论