版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、26.1.2反比例函数的图象与性质,数缺形时少直觉,形少数时难入微,南川中学:刘志桃,学习目标,1. 经历画反比例函数的图象、归纳得到反比例函数的 图象特征和性质的过程 (重点、难点) 2. 会画反比例函数图象,了解和掌握反比例函数的图 象和性质. (重点) 3. 能够初步应用反比例函数的图象和性质解题. (重点、 难点),你还记得作函数图象的一般步骤吗? 已知一次函数y=kx+b(k0)的图象是,反比例函数 (k0)的图象是什么呢?,让我们一起画个反比例函数的图象看看,好吗?,一条直线,回顾,讲授新课,例1 画反比例函数 与 的图象.,合作探究,提示:画函数的图象步骤一般分为:列表描点连线.
2、 需要注意的是在反比例函数中自变量 x 不能为 0.,解:列表如下:,1,1.2,1.5,2,3,6,6,3,2,1.5,1.2,1,2,2.4,3,4,6,6,4,3,2.4,2,O,2,描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点,5,6,x,y,4,3,2,1,1,2,3,4,5,6,3,4,1,5,6,1,2,3,4,5,6,连线:用光滑的曲线顺次连接各点,即可 得 的图象,x 增大,O,2,5,6,x,y,4,3,2,1,1,2,3,4,5,6,3,4,1,5,6,1,2,3,4,5,6,观察这两个函 数图象,回答问题:,思考:,(1) 每个函数图象分 别位于哪些
3、象限? (2) 在每一个象限内, 随着x的增大,y 如何 变化?你能由它们的 解析式说明理由吗?,y 减 小,(3) 对于反比例函数 (k0),考虑问题(1)(2), 你能得出同样的结论吗?,由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交; 在每个象限内,y 随 x 的增大而减小.,反比例函数 (k0) 的图象和性质:,归纳:,1. 反比例函数 的图象大致是 ( ),C,y,练一练,2 、反比例函数 的图象上有两点 A(x1,y1),B(x2, y2),且A,B 均在该函数图象的第一象限部分,若 x1 x2,则 y1与y2的大小关系为 ( ),A. y1 y2,B. y
4、1 = y2,C. y1 y2,D. 无法确定,C,观察与思考,例2: 当 k =2,4,6时,反比例函数 的图象,有哪些共同特征?,回顾上面我们利用函数图象,从特殊到一般研究反比例函数 (k0) 的性质的过程,你能用类似的方法研究反比例函数 (k0)的图象和性质吗?,反比例函数 (k0) 的图象和性质:,由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交; 在每个象限内,y随x的增大而增大.,归纳:,(1) 当 k 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;,(2) 当 k 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.,一般地,反比例函数 的图象是双曲线,它具有以下性质:,K0,K0,当k0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小.,当k0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.,图象性质见下表:,归纳:反比例函数的图象和性质:,能力提升:,点 (a1,y1),(a1,y2)在反比例函数 (k0) 的图象上,若y1y2,求a的取值范围.,解:由题意知,在图象的每一支上,y 随 x 的增大而 减小. 当这两点在图象的同一支上时, y1y2,a1a+1, 无解; 当这两点分别位于图象的两支上时, y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年粤教新版九年级科学下册月考试卷含答案446
- 人教版高中地理必修第一册综合检测卷含答案
- 2024年农业科技大棚租赁合作书3篇
- 2024年度大连智能锁研发与生产质量控制合同3篇
- 2024实习协议书-旅游行业实习生实习与就业指导合同3篇
- 牙科预约系统课程设计
- 2020-2021学年重庆市黔江区小学二年级下册数学期末试题及答案
- 2020-2021学年浙江省台州市椒江区四年级上学期期末语文真题及答案
- 小车课程设计
- 2024年度业主与装修公司定制家具生产与安装合同3篇
- Unit 2 How often do you exercise Section A 1a-2d 教学实录 2024-2025学年人教版八年级英语上册
- 2024年公路工程资料归档与承包合同3篇
- 法律逻辑学知到智慧树章节测试课后答案2024年秋西南政法大学
- 山东省临沂市2023-2024学年高二上学期期末学业水平检测历史试题 含答案
- 《中华人民共和国学前教育法》专题培训
- 产品质量培训
- 第四单元《10的再认识》(说课稿)-2024-2025学年一年级上册数学人教版
- 交通事故预防与应急处置考核试卷
- 辐射探测器市场发展前景分析及供需格局研究预测报告
- 成本经理招聘面试题及回答建议(某世界500强集团)2024年
- 小学英语学科校本研修方案
评论
0/150
提交评论