随机微分方程课件.ppt_第1页
随机微分方程课件.ppt_第2页
随机微分方程课件.ppt_第3页
随机微分方程课件.ppt_第4页
随机微分方程课件.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,1,1,随机微分方程及其应用,1,随机微分方程的重要性,近年来,随机微分方程,随机分析有了迅速发展,随机微分方程的理论广泛应用于经济、生物、物理、自动化等领域。 在经济领域,用随机微分方程来解决期权定价的问题,在产品的销售,市场的价格等随机事件中,可根据大量的试验数据确定某个随机变量,并附加初始条件建立随机微分方程的数学模型,从而推断出总体的发展变化规律。 在生物领域,用于揭示疾病的发生规律以及疾病的传播流行过程,肿瘤演化机制等。 在物理领域,用于布朗粒子的逃逸与跃迁问题,反常扩散。,3,3,随机微分方程定义,设X为n维的随机变量,W为m维的维纳运动,b和B是给定的函数,并不是随机变量,

2、,,1、随机微分方程的定义:,那么随机微分方程可以表示成如下形式:,若X满足等式: 那么X就是此随机微分方程的解。,如果系数b和B分别满足:b(x,t)=c(t)+D(t)x,B(x,t)=E(t)+F(t)x,那么就称此方程为线性随机微分方程。如果c(t)=E(t)=0,那么线性随机微分方程是齐次的。如果F(t)=0,这称随机微分方程狭义上是线性。,3,4,4,4,随机微分方程解的形式,2、线性随机微分方程的解的形式,以上我们定义的是基于n维随机变量和m维布朗运动的随机微分方程,实际应用中大多数为一维的情况,以下给出一维中随机微分方程的解的具体形式,当m=n=1时,线性随机微分方程的一般形式

3、如下:,解为:,其中,4,随机微分方程举例,2、线性随机微分方程举例,例1、股票价格,设P(t)表示在t时刻股票的价格,通过股票价格的变化率可以建立P(t)的随机微分方程:,其中和为常数,0 表示股票趋势项,表示股票波动项,则微分方程转化为下面的形式:,根据伊藤公式可知:,随机微分方程举例,可以解出P(t): 由此可知,若初始价格为正直,则股票价格总是正的。,由随机微分方程可知: 并且 ,则可知:,可以解出:,因此股票价格的期望值由股票的趋势项决定,与股票的波动没有关系。,7,随机微分方程举例,例2:朗之万方程,存在摩擦力的情况下,布朗粒子的运动模型服从一维的随机微分方程, ,其中表示白噪声,

4、b0表示摩擦系数,表示扩散系数。在此方程中,X代表布朗粒子的运动速率。X0与维纳过程相互独立,因为白噪声是维纳过程对时间的导数,所以此方程等价于下面的随机微分方程:,根据线性随机微分方程解的形式可以求得此微分方程的解为:,8,随机微分方程举例,可以求出X的期望:,则X的方差为:,则当t趋于无穷大时:,从解的形式来看,当t趋于无穷大时,X的渐近分布为正态分布 ,与初始分布无关。,9,随机微分方程举例,例3:乌伦贝克过程,布朗运动的另一随机微分方程模型:,其中Y(t)是t时刻布朗粒子的位移,Y0与Y1是给定的高斯随机变量,b0是摩擦系数,是扩散系数,通常为白噪声。 若 ,即X表示速率,则原方程等价

5、于以下朗之万方程:,则方程的解为:,10,随机微分方程举例,则可以解出原微分方程的解Y(t):,例4:随机谐波振子,其中 表示线性的保守势场力, 表示摩擦阻尼力,表示白噪声,可以通过一般的公式来求解此随机微分方程。 当X1=0,b=0,=1时,随机微分方程的解为:,11,11,逃逸问题,随机谐波振子的微分方程进行推广可以的得到如下方程:,阻尼力,b是摩擦系数,保守势场力,V(x)即为势函数,在随机谐波振子微分方程中 为线性的,当势函数为非线性的时,就会存在逃逸的问题。,随机力或噪声项,通常为高斯白噪声,1.摩擦系数b可以是线性的,也可以是非线性的。 2.此方程中X的导数为一阶,然而X的导数也可

6、以是分数阶导数,即分数阶摩擦,11,12,12,12,逃逸问题,逃逸问题是研究系统在随机力作用下从稳态出发的演化过程,尽管随机力很小,但是足以引起布朗粒子的逃逸,从而使原来的稳态发生质的改变,我们基于以上的随机微分方程来研究布朗粒子的逃逸问题。 若势函数V(x)是非线性的,且是单势阱,结构如下图:,12,13,13,13,逃逸问题,从势函数的结构图中可以看出该势阱的高度为 ,势能最小值的位置坐标为xs ,也是V(x)的稳定点,最大值的位置坐标为xu,也是V(x)的不稳定点。当 时, ,因此系统在负x方向是被束缚的,xxu,系统会自动趋于无穷,所以xxu叫做逃逸区。研究系统从束缚区进入逃逸区的问

7、题,就叫“逃逸问题”。,13,当势阱函数V(x)为双稳势阱时,在随机力的作用下,两个势阱中的运动不再相互独立,初始在某一势阱内的系统,会在不同时间以不同的概率进入另一势阱。逃逸问题也就转化为系统在随机力的作用下两个稳态之间的跃迁问题。,14,14,14,逃逸问题,如图所示:它在x的正负无穷上都是受束缚的,势函数有两个极小值(稳定解)和一个极大值(不稳定解 )。如果不存在随机力的作用,初态处于的势阱内的粒子将逗留在原势阱内,它们将各自趋于初态所处势阱的极小值,即到达系统的稳定解。而一旦到达了此稳态,粒子将永远不再偏离。但若存在随机力激励的条件下,则粒子就可能在两个稳态之间跃迁。,14,V(x)的

8、双势阱结构图,15,15,逃逸问题,逃逸率和平均首次穿越时间是用来刻画逃逸过程和跃迁过程的两个重要的特征量,布朗粒子首次穿过势垒所用的时间即为首通时间,由于随机力的作用,在同样条件的各次实验中,首通时间是各不相同的,即从一个稳态出发系统越过势垒进入另一势阱所用时间在各次试验中是不同的,这些时间的平均值叫作平均第一渡越时间(MFPT)。,15,16,非线性摩擦下的逃逸率,Model:,粒子的质量,假设m=1,高斯白噪声,噪声强度为D,16,(1)(v)表示非线性摩擦函数,在非平稳问题中,摩擦函数有RH和SET两种形式。 RH摩擦函数的表达式: u0表示在没有噪声激励下,粒子最终到达的速度,假设u

9、0=1,0=20, SET摩擦函数的表达式: ,假设=2,(2)势函数U(x)的表达式为: ,A表示振幅,则U(x)的结构图如下:,17,非线性摩擦下的逃逸率,如图所示,势能最小值坐标x-min=-1,为稳定点,势能最大值坐标x-max=1,为不稳定点,x1为逃逸区。,如果振幅很小的话,粒子会很容易逃出势垒,存在临界值振幅Ac,使得不存在噪声激励时,粒子逗留在原势阱内,不会逃逸。对于不同的摩擦函数,临界值的表达式不同。根据V的零切线的分叉可以可以计算出振幅的临界值。,该势阱的高度为3/4A。,18,非线性摩擦下的逃逸率,零切线:在不存在噪声的情况下, 所表示的直线就是v的零切线。那么v的零切线

10、为方程 的图像,该方程是关于v的三次方程,如果给定x的值,速率v存在三个解,位于中间的解是动态不稳定的,上下解的分支形成粒子的轨迹,x零切线与v的切斜线相交仅仅形成两个不稳定的固定点。通过上下解的分歧情况可以求出振幅的临界值。,18,对于SET摩擦函数临界振幅为: 当=2时,Ac=0.3,对于RH摩擦函数临界振幅为: ,当u0=1时, Ac=0.38,19,非线性摩擦下的逃逸率,如图所示,可以看出,当振幅小于临界值时,粒子的轨迹与零切线很接近,并且很快逃出稳定区,当振幅大于临界值时,粒子保持在最小值附近,轨迹类似于一极限环,即布朗粒子的运动稳定在极限环内。,在无噪声激励下,布朗粒子的样本路径如

11、图:,19,20,非线性摩擦下的逃逸率,Escape statistics:,由以上讨论可知,在没有噪声激励的情况下,如果振幅大于临界值,布朗粒子将逗留在稳定区内,在一极限环内运动。如果存在噪声的激励,粒子将逃离稳定区,随着噪声强度的增大,粒子越容易逃离,用逃逸率来衡量粒子逃逸的容易度,研究随着噪声强度的增大,逃逸率将如何变化。,在此逃逸率是用平均首次穿越时间的倒数来计算的。为了测量不同噪声强度下粒子的逃逸率,选取初始状态为x(0)=-1,v(0)=-1,计算粒子首次通过极限值xth=5的平均时间,也可以选取稳定区内的其他初始状态,这并不影响我们模拟的结果。,21,非线性摩擦下的逃逸率,逃逸率

12、随噪声强度的变化如下图:,21,22,非线性摩擦下的逃逸率,结论: (1)逃逸率并不是单调增加的随着噪声强度的增加,明显地,当振幅足够大时,噪声强度超过一定的范围,逃逸率随噪声强度的增大而减小,随后又随着噪声强度的增加而增大,产生了最大值和最小值。 (2)当A=0.41时,逃逸率的最大值是更显著的,一般而言,当振幅比较大时,对所有的噪声强度而言。逃逸率都会减小,但是在噪声强度较弱时,减小的更明显。 (3)随着振幅的增加,逃逸率的最大值将会在更大的噪声强度处取得,当振幅足够大时,逃逸率的最大值将消失,逃逸率随着噪声强度的增大严格递增。,22,23,非线性摩擦下的逃逸率,为了更好的理解逃逸率与噪声

13、强度的关系,画出了在不同噪声强度下的粒子逃逸轨迹如下图:,无噪声激励的情况下,粒子在极限环内运动,没能逃出势垒,在噪声强度很小的情况下,粒子在极限环内运动一段时间,最后通过分界线逃出势垒,随着噪声强度的增大,粒子更有可能逃出势垒,在极限环内只运动几圈,在一定的噪声强度范围内,随着噪声强度的增大,逃逸率减小,粒子稳定在极限环内,降低了逃逸的可能,但是最终也逃出势垒,23,24,非线性摩擦下的逃逸率,Summary:,论文研究了在非线性摩擦函数的情况下,逃逸率与噪声强度呈现非单调的关系,这与线性情况下的单调关系完全不一致。 依赖噪声的非单调逃逸率并非仅仅限制在一维的模型中,也可能在高维的模型中存在

14、。,24,进一步研究的问题,1.非高斯型噪声 2.分数阶摩擦 3.生物系统中的应用:肿瘤模型和神经元模型 基于随机微分方程的肿瘤演化机制及动力学行为研究,1.非高斯型的噪声,以上我们提到的噪声都是高斯白噪声,即概率密度函数服从正态分布,功率谱密度是常数的噪声,自然界中并不存在真正的白噪声,只是在噪声相关时间远小于确定性系统的弛豫时间时,噪声之间的关联才可以近似地忽略,当作白噪声来处理。则概率密度函数不服从正态分布的噪声为非高斯型噪声,可以通过高斯白噪声的线性表达形成非高斯型噪声。,假设(t)为非高斯噪声,则(t)满足下列线性方程:,其中,表示相关时间,(t)表示高斯白噪声,D表示噪声强度,q表

15、示(t)偏离高斯分布的程度。,27,27,2.分数阶导数GL定义,1、Grunwald-Letnikov(GL)分数阶导数定义 对于连续函数y=f(t),依据整数阶导数的定义,它的一阶导数定义式为:,依据相同的定义,可以推出二阶导数的定义式:,同理可得函数的三阶导数为:,27,28,28,2.分数阶导数GL定义,以此类推,n阶导数的一般定义可以记为:,式中:,推广以上等式,当n为任意正实数,可以导出GL分数阶导数的形式:,28,29,29,29,2.分数阶导数RL定义,其中:,2、黎曼-刘维尔(RL)分数阶微积分定义,(1)RL分数阶积分 首先定义2阶积分函数,设函数f(x)定义在区间 , 且函数f(x)的一阶积分函数在该区间上局部黎曼可积,则 对 ,称 为f(x)的二阶积分函数。 因为 则也可以称 为函数f(x)的二阶积分函数。,29,30,30,2.分数阶导数RL定义,通过数学归纳法可以推广出n阶积分函数,设函数f(x)定 义在区间 上, 在区间 上局部黎曼可 积,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论