版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用
2、.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内
3、容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4
4、.本章教学约需12课时,具体分配如下,仅供参考.标题课时2.1平面向量的实际背景及基本概念1课时2.2向量的线性运算3课时2.3平面向量的基本定理及坐标表示2课时2.4平面向量的数量积2课时2.5平面向量的应用举例2课时本章复习2课时2.1 平面向量的实际背景及基本概念 三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向
5、量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课 (情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1 推进新课新知探究提出问题在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所
6、学的数学中的知识抽象这些具有共同特征的量呢?新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?数量与向量的区别在哪里? 讨论结果:我们把既有大小,又有方向的量叫做向量.物理中称为矢量.提出问题如何表示向量?有向线段和线段有何区别和联系?分别可以表示向量的什么?长度为零的向量叫什么向量?长度为1的向量叫什么向量?满足什么条件的两个向量是相等向量?单位向量是相等向量吗?有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?数量与向量有什么区别?数学中的向量与物理中的力有什么区别
7、? 已知,线段AB的长度也叫做有向线段的长度,记作.有向线段包含三个要素:起点、方向、长度.图2 知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1起点是A,终点是B的有向线段,对应的向量记作:.这里要提醒学生注意的方向是由点A指向点B,点A是向量的起点.2用字母a,b,c,表示.(一定要学生规范书写:印刷用黑体a,书写用)3向量(或a)的大小,就是向量(或a)的长度(或称模),记作|(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能
8、比较大小,像ab就没有意义,而|a|b|有意义.讨论结果:向量也可用字母a,b,c,表示(印刷用粗黑体表示),手写用a 来表示,或用表示向量的有向线段的起点和终点字母表示,如、.注意:手写体上面的箭头一定不能漏写.有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长
9、度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.长度相等且方向相同的向量叫做相等向量.是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作abc.如图3.图4 又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出a,=b,=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量. 说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.是共线
10、向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例 例1、一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解
11、:根据题意画出示意图,如图6所示.|=100 m,|=100 m,ABC=45+15=60,ABC为正三角形.|=100 m,即此人从C点返回A点所走的路程为100 m.BAC=60,CAD=BAC-BAD=15,即此人行走的方向为西偏北15.故此人从C点走回A点的位移为沿西偏北15方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,与是共线向量;(2)单位向量都相等. 解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的量
12、. 解:=;=;=. 点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练 本例变式一:与向量长度相等的向量有多少个?(11个) 本例变式二:是否存在与向量长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行 ,答案:C 点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注
13、意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段 B.一段圆弧 C.两个点 D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点
14、所构成的图形是( )A.一个点 B.两个点 C.一个圆 D.一条线段答案:B知能训练课本本节练习.课堂小结 本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.1 1、2.教学后记:2.2 平面向量的线性运算2.2.1 向量加法运算及其几何意义三维目标1.通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地
15、掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.2.在应用活动中,理解向量加法满足交换律和结合律及表述两个运算律的几何意义.掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等.3.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识,体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.重点难点教学重点:向量加法的运算及其几何意义.教学难点:对向量加法法则定义的理解.课时安排1课时教学过程导入新课 (问题导入)2020年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式
16、子?一位同学按以下的命令进行活动:向北走20米,再向西走15米,再向东走5米,最后向南走10米,怎样计算他所在的位置?由此导入新课.推进新课新知探究提出问题数能进行运算,向量是否也能进行运算呢?类比数的加法,猜想向量的加法,应怎样定义向量的加法?猜想向量加法的法则是什么?与数的运算法则有什么不同?图1 活动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图1.某对象从A点经B点到C点,两次位移、的结果,与A点直接到C点的位移结果相同.力也可以合成,老师引导,让学生共同探究如下的问题: 图2(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图2(2)表
17、示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.图2改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力. 合力F与力F1、F2有怎样的关系呢?由图2(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长. 数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:向量加法的定义:如图3,已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与
18、b的和,记作a+b,即a+b=+=.图3求两个向量和的运算,叫做向量的加法.向量加法的法则:1向量加法的三角形法则 在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.0 位移的合成可以看作向量加法三角形法则的物理模型. 2向量加法的平行四边形法则图4 如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法的物理模型.提出问题对于
19、零向量与任一向量的加法,结果又是怎样的呢?两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?思考|a+b|,|a|,|b|存在着怎样的关系?数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢? 讨论结果:对于零向量与任一向量,我们规定a+0=0+a=a.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.当a,b不共线时,|a+b|a-b|,异向则有|a+b|0时,a的方向与a的方向相同;当|2a+b| B.|2a|a+2b| D.|2b|a
20、+2b|答案:C3.(2020全国高考),5 在ABC中,已知D是AB边上一点,若=2,=+,则等于( )A. B. C.- D.-答案:A知能训练本节练习解答:课堂小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件,体会本节学习中用到的思想方法:特殊到一般,归纳、猜想、类比,分类讨论,等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业课本习题2.2 A组题11、12.教学后记:.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理2.3.2 平面
21、向量的正交分解及坐标表示三维目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.课时安排1课时教学过程导入新课 前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面
22、内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题图1给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如1e1+2e2的向量表示呢?如图1,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之
23、间的关系. 活动:如图1,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于直线OB的直线,与直线OA;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数1、2,使得=1e1,=2e2.由于,所以a=1e1+2e2.也就是说,任一向量a都可以表示成1e1+2e2的形式. 由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只
24、有一对实数1、2,使a=1e1+2e2.定理说明:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:可以.a=1e1+2e2.提出问题平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?对平面中的任意一个向量能否用两个互相垂直的向量来表示? 活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学
25、生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2 已知两个非零向量a和b(如图2),作=a,=b,则AOB=(0180)叫做向量a与b的夹角. 显然,当=0时,a与b同向;当=180时,a与b反向.因此,两非零向量的夹角在区间0,180内. 如果a与b的夹角是90,我们说a与b垂直,记作ab. 由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量1a1和2a2,使a=1a1+2a2. 在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分
26、解,正交分解是向量分解中常见的一种情形. 在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:存在夹角且两个非零向量的夹角在区间0,180内;向量与直线的夹角不一样.可以.提出问题我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x+yj 这样,平面内的任一向量a都可由x、y唯一
27、确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y) 其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,式叫做向量的坐标表示.显然,=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a与有序实数对(x,y)一一对应.(2)向量a的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,是表示a的有向线段,A1、B1的坐标分别为(x1,y1)、(x2,y2),则向量a的坐标为x=x2-x1,y=y2-y1,即a的坐标为(x2-x1,y2-y1).(3)为简化处理问题的过程,把坐标原点作为表示向量a的有向线段的
28、起点,这时向量a的坐标就由表示向量a的有向线段的终点唯一确定了,即点A的坐标就是向量a的坐标,流程表示如下:讨论结果:平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).是一一对应的.应用示例思路1例1 如图4,ABCD,=a,=b,H、M是AD、DC之中点,F使BF=BC,以a,b为基底分解向量.图4 点评:以a、b为基底分解向量与,实为用a与b表示向量与.变式训练图5已知向量e1、e2(如图5),求作向量-2.5e1+3e2.作法:(1)如图,任取一点O,作=-2.5e1,=3e2.(2)作OACB.故OC就是求作的向量.图6例2 如图6,
29、分别用基底、j表示向量a、b、c、d,并求出它们的坐标. 变式训练i,j是两个不共线的向量,已知=3i+2j,=i+j,=-2i+j,若A、B、D三点共线,试求实数的值.解:=-=(-2i+j)-(i+j)=-3i+(1-)j,又A、B、D三点共线,向量与共线.因此存在实数,使得=,即3i+2j=-3i+(1-)j=-3i+(1-)j.i与j是两个不共线的向量,故当A、B、D三点共线时,=3.例3 下面三种说法:一个平面内只有一对不共线向量可作为表示该平面的基底;一个平面内有无数多对不共线向量可作为该平面所有向量的基底;零向量不可以作为基底中的向量,其中正确的说法是( )A. B. C. D.
30、 解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M是ABC内一点,且满足条件0,延长CM交AB于N,令=a,试用a表示. 推论1:e1与e2是同一平面内的两个不共线向量,若存在实数1、2,使得1e1+2e2=0,则1=2=0.推论2:e1与e2是同一平面内的两个不共线向量,若存在实数a1,a2,b1,b2,使得a=a1e1+a2e2=b1e1+b2e2,则解:由=0,得0.=0.又A、N、B三点共线,C、M、N三点共线,由平行向量基本定理,设0.(+2)+(3+3)=0.由于和不共线,=2a. 点评:这里选取作为基底,运用化归思想,把问题归结为1e1+2e2=0的形式来解决.变式训练设e1与e2是两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论