2025届江苏省江阴市高三下学期联合考试数学试题含解析_第1页
2025届江苏省江阴市高三下学期联合考试数学试题含解析_第2页
2025届江苏省江阴市高三下学期联合考试数学试题含解析_第3页
2025届江苏省江阴市高三下学期联合考试数学试题含解析_第4页
2025届江苏省江阴市高三下学期联合考试数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省江阴市高三下学期联合考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.2.已知函数.若存在实数,且,使得,则实数a的取值范围为()A. B. C. D.3.已知集合,则=A. B. C. D.4.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.05.函数(其中,,)的图象如图,则此函数表达式为()A. B.C. D.6.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.7.已知双曲线C的两条渐近线的夹角为60°,则双曲线C的方程不可能为()A. B. C. D.8.设函数的定义域为,命题:,的否定是()A., B.,C., D.,9.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.210.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.3211.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.12.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.14.已知函数,则曲线在点处的切线方程为___________.15.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.16.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有____人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.18.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.19.(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.20.(12分)已知各项均不相等的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.21.(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.22.(10分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.2、D【解析】

首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,.其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2).(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.3、C【解析】

本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.4、C【解析】

集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.5、B【解析】

由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.6、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.7、C【解析】

判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【详解】两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况.依题意,双曲渐近线与轴的夹角为30°或60°,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.8、D【解析】

根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.9、A【解析】

根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.10、B【解析】

设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.11、A【解析】

利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.12、B【解析】

设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、64【解析】

由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.14、【解析】

根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.15、1元【解析】设分别生产甲乙两种产品为桶,桶,利润为元

则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,

由图象知当直线经过时,目标函数的截距最大,此时最大,

由可得,即此时最大,

即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.16、750【解析】因为0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:18、(1);.;(2)【解析】

(1)根据题意,知,且,令和即可求出,,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,,且,当时,,则,当时,,,由已知可得,且,∴的通项公式:.(2)设,则,所以,,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.19、(1)(2)【解析】

(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.∴,∴.【点睛】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.20、(1);(2).【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去),所以,故.(2),考点:等差数列的通项公式;数列的求和.21、(1)不需调整(2)列联表见解析;有的把握判断学生“选择化学科目”与“选择物理科目”有关(3)详见解析【解析】

(1)可估计高一年级选修相应科目的人数分别为120,2,推理得对应开设选修班的数目分别为15,1.推理知生物科目需要减少4名教师,化学科目不需要调整.(2)根据列联表计算观测值,根据临界值表可得结论.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,根据二项分布概率公式可得分布列和数学期望.【详解】(1)经统计可知,样本40人中,选修化学、生物的人数分别为24,11,则可估计高一年级选修相应科目的人数分别为120,2.根据每个选修班最多编排50人,且尽量满额编班,得对应开设选修班的数目分别为15,1.现有化学、生物科目教师每科各8人,根据每位教师执教2个选修班,当且仅当一门科目的选课班级总数为奇数时,允许这门科目的一位教师执教一个班的条件,知生物科目需要减少4名教师,化学科目不需要调整.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论