直线及其方程参考课件_第1页
直线及其方程参考课件_第2页
直线及其方程参考课件_第3页
直线及其方程参考课件_第4页
直线及其方程参考课件_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直线及其方程1.直线的倾斜角与斜率(1)x轴的正方向与直线向上的方向之间所成的角叫做直线的倾斜角.我们规定直线与x轴平行或重合时的倾斜角为零度角,倾斜角的范围是

.基础知识梳理0°≤α<180°(2)斜率与倾斜角的关系:当一条直线的倾斜角为α时,斜率可以表示为

,其中倾斜角α应满足的条件是

.基础知识梳理k=tanαα≠90°2.直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式是k=

.基础知识梳理3.直线方程的几种形式基础知识梳理名称方程的形式已知条件局限性点斜式(x1,y1)为直线上一定点,k为斜率不包括垂直于x轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线y-y1=k(x-x1)y=kx+b基础知识梳理名称方程的形式已知条件局限性两点式(x1,y1),(x2,y2)是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线Ax+By+C=0(A2+B2≠0)过两点P1(x1,y1),P2(x2,y2)的直线是否一定可用两点式方程表示?【思考·提示】不一定.(1)若x1=x2且y1≠y2,直线垂直于x轴,方程为x=x1.(2)若x1≠x2且y1=y2,直线垂直于y轴,方程为y=y1.(3)若x1≠x2且y1≠y2,直线方程可用两点式表示.基础知识梳理思考?1.直线的倾斜角与斜率的关系课堂互动讲练考点一直线的倾斜角和斜率但不能说直线的倾斜角α越大,斜率k也越大.1.已知m≠0,则过点(1,-1)的直线ax+3my+2a=0的斜率为(

)三基能力强化答案:B2.已知点A(1,2)、B(3,1),则线段AB的垂直平分线方程是(

)A.4x+2y=5B.4x-2y=5C.x+2y=5D.x-2y=5答案:B三基能力强化3.下列四个命题中,假命题是(

)A.经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示B.经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示三基能力强化答案:D三基能力强化4.(2009年高考安徽卷改编)直线l过点(-1,2)且与直线2x-3y+4=0平行,则l的方程是________.答案:2x-3y+8=0三基能力强化三基能力强化课堂互动讲练(2)已知直线的倾斜角α或α的某种三角函数值根据k=tanα来求斜率.3.利用斜率证明三点共线的方法已知A(x1,y1),B(x2,y2),C(x3,y3),若x1=x2=x3或kAB=kAC,则有A、B、C三点共线.提醒:斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论.课堂互动讲练课堂互动讲练例1已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB倾斜角的一半,求l的斜率.【思路点拨】先用斜率公式求出直线AB的斜率,然后利用三角函数公式求直线l的斜率.课堂互动讲练【解】

法一:设直线l的倾斜角为α,则直线AB的倾斜角为2α,由题意知课堂互动讲练课堂互动讲练【名师点评】在利用斜率公式时,要注意x1≠x2,若x1=x2时,斜率不存在,不能再利用斜率公式.课堂互动讲练求直线方程时,首先分析具备什么样的条件;然后恰当地选用直线方程的形式准确写出直线方程.要注意若不能断定直线具有斜率时,应对斜率存在与不存在加以讨论.在用截距式时,应先判断截距是否为0.若不确定,则需分类讨论.课堂互动讲练考点二求直线的方程课堂互动讲练例2(2)经过点P(3,2),且在两坐标轴上的截距相等;【思路点拨】寻找确定直线的两个独立条件,根据不同的形式建立直线方程.课堂互动讲练课堂互动讲练课堂互动讲练∴直线l的方程为:y-2=-(x-3)或y-2=(x-3),即x+y-5=0或2x-3y=0.课堂互动讲练【规律总结】用待定系数法求直线方程的步骤:(1)设所求直线方程的某种形式.(2)由条件建立所求参数的方程(组).(3)解这个方程(组)求参数.(4)把所求的参数值代入所设直线方程.利用直线方程解决问题,可灵活选用直线的形式,以便简化运算.一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知截距或两点选择截距式或两点式.课堂互动讲练考点三直线方程几种形式的灵活运用另外,从所求的结论来看,若求直线与坐标轴围成的三角形面积或周长,常选用截距式或点斜式.提醒:(1)点斜式与斜截式是两种常见的直线方程形式,要注意在这两种形式中要求直线的斜率存在.(2)“截距”并非“距离”,可以是正的,也可以是负的,还可以是0.课堂互动讲练课堂互动讲练例3如图,过点P(2,1)作直线l,分别交x、y轴正半轴于A、B两点.(1)当△AOB的面积最小时,求直线l的方程;(2)当|PA|·|PB|取最小值时,求直线l的方程.【思路点拨】求直线方程时,要善于根据已知条件,选取适当的形式.由于本题中给出了一点,且直线与x、y轴在正方向上分别相交,故有如下常见思路:(1)点斜式:设l的方程为y-1=k(x-2),分别求出A、B的坐标,根据题目要求建立目标函数,求出最小值并确立最值成立的条件;课堂互动讲练(2,1)代入得出a与b的关系,建立目标函数,求最小值及最值成立的条件.(3)根据题意,设出一个角,建立目标函数,利用三角函数的有关知识解决.课堂互动讲练课堂互动讲练课堂互动讲练课堂互动讲练课堂互动讲练课堂互动讲练【名师点评】在研究最值问题时,可以从几何图形入手,找到最值时的情形,也可以从代数角度考虑,构建目标函数,进而转化为研究函数的最值问题,这种方法常常随变量的选择不同而运算的繁简程度不同,解题时要注意选择.课堂互动讲练例3条件不变,求|OA|+|OB|最小时,直线l的方程.课堂互动讲练互动探究课堂互动讲练用解析法解决实际应用题,就是通过建立直角坐标系,用坐标表示点,用方程表示曲线,实现了从实际问题到代数问题的转化,利用代数的方法使问题得到解决.课堂互动讲练考点四直线方程的实际应用课堂互动讲练例4(解题示范)(本题满分12分)某小区内有一块荒地ABCDE,今欲在该荒地上划出一块长方形地面(不改变方位)进行开发(如图所示).问如何设计才能使开发的面积最大?最大开发面积是多少?(已知BC=210m,CD=240m,DE=300m,EA=180m,∠C=∠D=∠E=90°)【思路点拨】先建立直角坐标系,求出AB的方程,然后求解.课堂互动讲练【解】以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系(如图),由已知可得A(0,60),B(90,0),2分课堂互动讲练(1)当点在BC上时,S最大=210×240=50400(m2).5分(2)当点在AE上时,S最大=180×300=54000(m2).6分课堂互动讲练课堂互动讲练比较可知点P距AE15m,距BC50m时所开发的面积最大,最大面积为54150m2.12分课堂互动讲练【名师点评】

(1)确定线段方程时,易忽视x的取值范围;(2)漏掉一顶点在BC上或AE上的情况.(本题满分12分)如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费(元))与照明时间x(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.课堂互动讲练高考检阅(1)根据图象,分别求出l1,l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小明的房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请帮他设计最省钱的用灯方法,并求出最低费用.课堂互动讲练解:(1)设l1:y=k1x+b1,l2:y=k2x+b2.∵点(0,2),(500,17)在l1上,(0,20),(500,25)在l2上,∴l1:y=0.03x+2(0≤x≤2000),l2:y=0.01x+20(0≤x≤2000).4分课堂互动讲练课堂互动讲练∴当照明时间为900小时时,两种灯费用相等,都是29元.8分课堂互动讲练(3)由题图知,前2000小时使用节能灯的费用较白炽灯低,后500小时使用白炽灯费用较节能灯低.10分∴总费用为2000×0.01+20+500×0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论