版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page1四川省内江市2024-2025学年高三数学第一次模拟考试(文)试题第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.)1.设复数,则()A. B. C. D.【答案】D【解析】【分析】利用复数的除法化简复数z,然后由模的公式求解.【详解】因为,所以,故选:D【点睛】本题主要考查复数的运算和复数的模,还考查了运算求解的实力,属于基础题.2.设集合,,则集合()A. B. C. D.【答案】D【解析】【分析】先分别求出集合,再计算即可.【详解】,则又,故选:D.3.此次流行的冠状病毒为一种新发觉的冠状病毒,国际病毒分类委员会命名为.因为人群缺少对新型病毒株的免疫力,所以人群普遍易感.为了解某中学对新冠疫情防控学问的宣扬状况,增加学生日常防控意识,现从该校随机抽取名学生参与防控学问测试,得分(分制)如图所示,以下结论中错误的是()A.这名学生测试得分的中位数为B.这名学生测试得分的众数为C.这名学生测试得分的平均数比中位数大D.从这名学生的测试得分可预料该校学生对疫情防控的学问驾驭较好【答案】D【解析】【分析】依据统计图可依次计算中位数、众数和平均数,由此依次推断各个选项即可.【详解】对于A,这名学生测试得分的中位数为得分从小到大排列后,第和名学生成果的平均数,由统计图可知:中位数为,A正确;对于B,由统计图可知:这名学生测试得分的众数为,B正确;对于C,这名学生测试得分的平均数为,即平均数比中位数大,C正确;对于D,这名学生测试得分的平均数、众数、中位数均较低,由此可预料该校学生对疫情防控的学问驾驭的不够好,D错误.故选:D.4.已知向量,若与的夹角为,则()A. B. C. D.【答案】D【解析】【分析】先表示出的坐标,再依据向量的夹角公式列出关于m的方程,解得答案.【详解】由题意得,故,解得,其中不合题意,舍去,故,故选:D5.的内角A、B、C所对的边分别为,已知,,,则()A.4 B. C. D.【答案】B【解析】分析】先通过正弦定理得,则可求出,再利用余弦定理求即可.【详解】因为,由正弦定理得,又,由余弦定理,则故选:B.6.已知数列满意:,点在函数的图象上.则()A.2 B.3 C.4 D.5【答案】A【解析】【分析】先通过求出,则可得数列的通项公式,代入可求得.【详解】由已知,则,解得,故选:A.7.函数的图像大致为()A. B.C. D.【答案】B【解析】【分析】由函数为偶函数可解除AC,再由当时,,解除D,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,解除AC;当时,,所以,解除D.故选:B.8.习近平总书记多次强调生态文明建设关系人民福祉、关乎民族将来,是事关实现“两个一百年”奋斗目标;事关中华民族永续发展的大事.“环境就是民生,青山就是漂亮,蓝天也是华蜜”,随着经济的发展和社会的进步,人们的环保意识日益增加.某化工厂产生的废气中污染物的含量为,排放前每过滤一次,该污染物的含量都会削减,当地环保部门要求废气中该污染物的含量不能超过,若要使该工厂的废气达标排放,那么该污染物排放前须要过滤的次数至少为()(参考数据:,)A. B. C. D.【答案】C【解析】【分析】依据已知关系可构造不等式,利用指数与对数互化可得,结合换底公式和对数运算法则可求得的最小值.【详解】设排放前须要过滤次,则,,,又,,即排放前须要过滤的次数至少为次.故选:C.9.在内随机取两个数,则这两个数的和小于的概率为()A. B. C. D.【答案】C【解析】【分析】在区间内随机取两个数,满意,得到围成的正方形的面积,再画出不等式组所表示的平面区域,利用几何概型概率公式即可求解.【详解】由题意,在区间内随机取两个数,满意,则不等式组所围成的正方形的面积为,由这两个数的和小于,即,作出不等式组所表示的平面区域,如图所示,则阴影部分的面积为,所以这两个数的和小于的概率为.故选:C.10.已知函数,若函数在上单调递减,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】先用二倍角公式与协助角公式化简,结合函数单调性,列出不等式组,解出实数的取值范围,进而求出答案.【详解】,由函数在上单调递减.且,,解得:,因为,当且仅当时,有满意要求的取值,即.故选:C.11.已知函数,设,,,则()A. B. C. D.【答案】B【解析】【分析】确定函数的奇偶性,利用导数证明函数的单调性,将化为,比较的大小关系即可得答案.【详解】函数的定义域为,,故为偶函数,当时,,令,则,即单调递增,故,所以,则在时单调递增,由于因为,而,,即,则,故选:B12.已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.7 C.6 D.4【答案】C【解析】【分析】设,由,得,作出,的图象,由与的图象有4个交点求解.【详解】解:设,由,得,作出,的图象,如图所示:设直线与相切,切点为,则,解得,,设直线与相切,切点为,则,解得,,故直线与的图象有4个交点,不妨设,且,由图象可知:,由的函数图象可知无解,有一个解,有三个解,有两个解,所以有6个零点,故选:C第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,满分20分.)13.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成果(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.【答案】9【解析】【详解】阅读茎叶图,由甲组数据的中位数为可得,乙组的平均数:,解得:,则:.点睛:茎叶图的绘制需留意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不须要统一;(2)重复出现的数据要重复记录,不能遗漏,特殊是“叶”的位置的数据.14.若实数满意不等式组,则的最小值为_________.【答案】【解析】【分析】依据不等式组可作出可行域,将问题转化为直线在轴截距最小值的求解,采纳数形结合的方式可求得结果.【详解】依据不等式组可得可行域如下图阴影部分所示,当取得最小值时,直线在轴截距最小,由图象可知:当过时,在轴截距最小,.故答案为:.15.已知是定义域为的奇函数,且对随意的满意,若时,有,则______.【答案】【解析】【分析】由条件可得,然后可算出答案.【详解】因为,是定义域为的奇函数,所以因为当时,有,所以所以故答案为:16.已知正实数a、b满意,则a、b肯定满意的关系有______.(填序号)①;②;③;④.【答案】①③.【解析】【分析】因为,所以,即,即,可得,,结合基本不等式即可求解最值,进而推断可得答案.【详解】因为,所以,即,即,可得,,所以,对于①,当且仅当时等号成立,所以,故①正确.对于②,当且仅当时等号成立,所以,故②错误.对于③,,当且仅当,时等号成立,所以,故③正确.对于④,当且仅当,时等号成立,所以,故④错误.综上所述:正确的序号为①③.故答案为:①③.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必需作答,第22、23题为选考题,考生依据要求作答.)(一)必考题:共60分.17.第届北京冬季奥林匹克运动会于年月日至月日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某中学共有学生:名,其中男生名,女生名,按性别分层抽样,从中抽取名学生进行调查,了解他们是否参与过滑雪运动.状况如下:参与过滑雪未参与过滑雪男生女生(1)若,,求参与调查的女生中,参与过滑雪运动的女生比未参与过滑雪运动的女生多的概率;(2)若参与调查的女生中,参与过滑雪运动的女生比未参与过滑雪运动的女生少人,试依据以上列联表,推断是否有的把握认为“该校学生是否参与过滑雪运动与性别有关”.附:,.【答案】(1)(2)没有的把握认为“该校学生是否参与过滑雪运动与性别有关”【解析】【分析】(1)依据分层抽样原则可确定抽取的名学生中,女生有人,由此可列举出全部可能的取值结果,并确定的取值结果,依据古典概型概率公式可求得结果;(2)依据可求得的值,进而得到,由列联表可求得,对比临界值表可得结论.【小问1详解】依据分层抽样原则知:抽取的名学生中,女生有人,若,,则全部可能的取值结果有,,,,,,,,,共个;其中满意的有,,,,共个,参与过滑雪运动的女生比未参与过滑雪运动的女生多的概率为.【小问2详解】由(1)知:,又,,,,,没有的把握认为“该校学生是否参与过滑雪运动与性别有关”.18.已知函数,.(1)已知,求的值;(2)已知内角A、B、C的对边分别为a、b、c,且,c=3,若向量与垂直,求的周长.【答案】(1)(2)【解析】【分析】(1)先变形得到,再利用计算即可;(2)先通过求出,再利用向量垂直求出,则也可得出,再通过正弦定理求角所对的边即可求出周长.【小问1详解】,,;【小问2详解】由(1)得,则,,又,,又向量与垂直,,即,又,则,由正弦定理,则,的周长为.19.数列满意:,.(1)求数列的通项公式;(2)设,为数列的前n项和,若恒成立,求实数m的取值范围.【答案】(1),(2)或【解析】【分析】(1)依据递推关系得,再验证满意条件即可求得答案;(2)由(1)知,,再结合裂项求和与数列的单调性得,再解不等式即可.【小问1详解】解:当,,①,,②①-②得(*)在①中令,得,也满意(*),所以,,【小问2详解】解:由(1)知,,故,于是,因为随n的增大而增大,所以,解得或所以实数m的取值范围是或.20.已知函数.(1)求在区间上的最值;(2)若过点可作曲线的3条切线,求实数的取值范围.【答案】(1)最大值,最小值;(2).【解析】【分析】(1)求导得到函数的单调性,依据单调性求得函数的极值和端点值,比较可得函数的最值;(2)设切点,进而得方程有3个根,然后构造函数利用单调性、极值求解即得.【小问1详解】∵,,由解得或,由解得,又,所以在上单调递减,在上单调递增,又,∴的最大值是,最小值是;【小问2详解】设切点,则,则切线为,∴整理得,由题意知此方程应有3个解,令,则,由解得或,由解得,∴函数在,上单调递增,在上单调递减,∴当时,有极大值,且极大值为,当时,有微小值,且微小值为;要使得方程有3个根,则,解得,∴实数的取值范围为.21.已知函数(1)当时,求f(x)的单调递增区间:(2)若函数f(x)恰有两个极值点,记极大值和微小值分别为M、m,求证:.【答案】(1)和;
(2)证明见解析.
【解析】【分析】(1)利用导数探讨函数的单调性即可求解;(2)依据极值点的定义可得方程有两个不相等的实根(),由正弦函数图象可知,利用导数求出函数极值,进而构造函数,再次利用导数求出即可.【小问1详解】函数的定义域为,当时,,,令或,当时,单调递增,当时,单调递减,当时,单调递增,所以函数的单调递增区间为和;【小问2详解】,因函数恰有两个极值点,所以方程有两个不相等的实根,设为且,当时,函数图象关于直线对称,则,即,因为,所以,当时,单调递增,当时,单调递减,当时,单调递增,所以分别是函数的极大值点和微小值点,即,,于是有,因为,所以,所以,而,所以,设,,则,令或,当时,单调递减,当时,单调递增,所以当时,函数有最小值,即,因此有,即.【点睛】在解决类似的问题时,要娴熟应用导数探讨函数的单调性、极值与最值,要驾驭极值与极值点的定义,缕清极值点与方程的根之间关系,擅长培育转化的数学思想,学会构造新函数,利用导数探讨新函数的性质即可解决问题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.假如多做,则按所做的第一题计分.22.在直角坐标系中,已知曲线(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的一般方程和直线的直角坐标方程;(2)求曲线与直线交点极坐标.【答案】(1)曲线;直线(2)和【解析】【分析】(1)依据参数方程与一般方程、极坐标与直角坐标互化原则干脆求解即可;(2)联立曲线与直线的直角坐标方程,可求得交点的直角坐标,依据直角坐标与极坐标互化的方法可求得极坐标.【小问1详解】由得:,即曲线的一般方程为;由得:,则,即直线的直角坐标方程为.【小问2详解】由得:或,即曲线与直线交点为和,曲线与直线交点的极坐标为和.23.已知函数.(1)当时,解不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业品买卖合同书
- 康双的离婚协议书
- 三农村生态建设实施指南
- 工程监理承包合同
- 云计算在企业IT架构中应用教程
- 运动训练方法与技巧指南
- 软件测试流程与质量保障作业指导书
- 临设工程劳务分包合同
- 网络安全威胁防范与应对作业指导书
- 钢渣购销合同
- 环境检测实验室分析人员绩效考核方案
- 全过程工程咨询管理服务方案
- YYT 0681.4-2010 无菌医疗器械包装试验方法 第4部分 染色液穿透法测定透气包装的密封泄漏
- 《麻风病防治知识》课件
- 经典诵读演讲稿6篇
- 乡村医生返聘协议书
- 2024机械买卖协议
- 当代世界经济与政治 第八版 课件 第四章 发展中国家的经济与政治
- 2024-2030年中国汽车安全气囊行业发展形势分析及投资规划分析报告
- 平面构成(普通高等院校艺术设计专业)全套教学课件
- 译林版六年级下册英语Unit-1《The-lion-and-the-mouse》教学课件
评论
0/150
提交评论