《信息科学类专业英语》课件第2章_第1页
《信息科学类专业英语》课件第2章_第2页
《信息科学类专业英语》课件第2章_第3页
《信息科学类专业英语》课件第2章_第4页
《信息科学类专业英语》课件第2章_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Vocabulary(词汇)ImportantSentences(重点句)QuestionsandAnswers(问答)Problems(问题)Lesson2ExtremeScaleComputing

(第二课超大规模计算)

Supercomputinghasbeenamajorpartofmyeducationandcareer,fromthelate1960swhenIwasdoingatomicandmolecularcalculationsasaphysicsdoctoratestudentattheUniversityofChicago,totheearly1990swhenIwasgeneralmanagerofIBM’sSP

familyofparallelsupercomputers.

Theperformanceadvancesofsupercomputersinthesepastdecadeshavebeenremarkable.ThemachinesIusedasastudentinthe1960sprobablyhadapeakperformanceofafewmillioncalculationspersecondormegaflops.Gigaflops(billions)peakspeedswereachievedin1985,teraflops(trillions)in1997,andpetaflops(a1followedbyfifteenzeros)in2008.

Thesupercomputingcommunityisnowaimingforexascalecomputing,1,000,000,000,000,000,000calculationspersecond.Thepursuitofexascale-classsystemswasahottopicattherecentSC09

supercomputingconference.

Inthequestforthefastestmachines,supercomputershavealwaysbeenattheleadingedgeofadvancesinIT,identifyingthekeybarrierstoovercomeandexperimentingwithtechnologiesandarchitecturesthatgenerallythenappearinmorecommercialproductsafewyearslater.

Throughthe1970sand1980s,thefastestsupercomputerswerebasedonvectorarchitecturesandusedhighlysophisticatedtechnologiesandliquidcoolingmethodstoremovethelargeamountsofheattheygenerated.

Bythelate1980s,thesecomplexandexpensivetechnologiesranoutofgas.Asthemicroprocessorsusedinpersonalcomputersandtechnicalworkstationswerebecomingincreasinglypowerful,youcouldnowbuildsupercomputersusingtheseCMOSmicrosandparallelarchitecturesatamuchlowerpricethanthepreviousgenerationsofvectormachines.Asimilartransitiontomicroprocessorcomponentsandparallelarchitecturestookplaceinthemainframesusedincommercialapplications.

Massivelyparallelarchitectures,usingtenstohundredsofthousandsofprocessorsfromthePCandUnixmarketshavedominatedsupercomputingoverthepasttwentyyears.Theygotusintotheterascaleandpetascaleranges.But,theywillnotgetustoexascale.AnothermassivetechnologyandarchitecturaltransitionnowloomsforsupercomputingandtheITindustryingeneral.[1]

Anticipatingthemajorchallengesinvolvedinthetransitiontoexascale,theDepartmentOfEnergy(DOE)andDARPAlaunchedaseriesofactivitiesaroundthreeyearsagotostartplanningforsuchsystems.

ThisDARPAExaScaleComputingStudyprovidesaverygoodoverviewofthekeytechnologychallenges.Thestudyidentifiedfourmajorchallengeswherecurrenttrendsareinsufficient,anddisruptivetechnologybreakthroughsareneededtomakeexascalecomputingareality.

TheEnergyandPowerChallengeispervasive,affectingeverypartofthesystem.Today’sleadingedgepetascalesystemsconsumebetween2-3Megawatts(MW)perpetaflop.Itisgenerallyagreedthatanexaflopsystemmustconsumearound20MWs,otherwisetheiroperatingcostswouldbeprohibitivelyexpensive.The1000-foldincreaseinperformancefrompetascaletoexascalemustthusbeachievedatnomorethana10-foldincreaseinpowerconsumption.

Suchstretchtargetswereactuallyachievedinthetransitionfromterascaleinthelate1990stopetascalenow.Butnoonebelievesitcanbedoneagainwithtoday’stechnologies,hencetheassumptionthatatechnologyandarchitecturaltransitionasprofoundastheonetwodecadesagoisnowrequired.

TheMemoryandStorageChallengeisamajorconsequenceofthepowerchallenge.Thecurrentlyavailablemainmemories(DRAM)anddiskdrives(HDD)thathavedominatedcomputinginthelastdecadeconsumewaytoomuchpower.Newtechnologiesareneeded.

TheConcurrencyandLocalityChallenge

isanotherconsequenceofthepowerchallenge.Overthepasttwentyyearswehavebeenabletoachieveperformanceincreasesthroughacombinationoffasterprocessesandhigherlevelsofparallelism.But,wearenolongerabletoincreasetheperformanceofasingleprocessingelementbyturninguptheclockrateduetopowerandcoolingissues.

Wenowhavetorelysolelyonincreasedconcurrency.

Thetopterascalesystemsoftenyearsagohadroughly10,000processingelements.Today’spetscalesystemisupinthelow100,000s.But,because,theonlywaytonowincreaseperformancetowardanexascalesystemismassiveparallelism,anexaflopsupercomputermighthave100sofmillionsofprocessingelementsorcores.Suchmassiveparallelismwillrequiremajorinnovationsinthearchitecture,softwareandapplicationsforexascalesystems.ThisDARPAExascaleSoftwareStudyprovidesagoodoverviewofthesoftwarebreakthroughsrequired.

Finally,wehavetheResiliencyChallenge,thatis,theabilityofasystemwithsuchhugenumberofcomponentstocontinueoperationsinthepresenceoffaults.Anexascalesystemmustbetrulyautonomicinnature,constantlyawareofitsstatus,andoptimizingandadaptingitselftorapidlychangingconditions,includingfailuresofitsindividualcomponents.TheexascaleresiliencychallengesarediscussedinthisDARPAreportonSystemResiliencyatExtremeScales.

Therearevastbusinessimplicationstosuchamassivetechnologyandarchitecturaltransition.Forone,theecosystemofthepasttwentyyears,wherePCshaveprovidedthecomponentsforparallelsupercomputers,isnowgivingwaytoanewbusinessecosystem.Consumerelectronics,mobiledevicesandembeddedsensorsarenowthenewpartnersoftheextremescalesupercomputingcommunity,becausetheysharethesamerequirementsforplentiful,powerfulandinexpensivecomponentsthatconsumelittlepower.

Thistransitiontoanewecosystemalreadystartedaboutfiveyearsago.IBM’sBlueGenefamilyusesrelativelylowpower,embeddedcoresasitsprocessingelements,andRoadrunner’shybriddesignincludestheCellprocessorsoriginallydevelopedforSony’sPlayStation3.

ThemostpowerfulsupercomputersintheUShavegenerallybeendevelopedfor,andfirstinstalledatDOE’snationallabs,eitheraspartofitsAdvancedScientificComputingResearch(ASCR)programinsupportofenergyandenvironmentalresearch,ortheAdvancedSimulationandComputingprograminsupportofnuclearweaponsresearch.TheseDOElabstypicallyworkcloselywiththevendorsintherequirementsanddesignofsuchleadingedgesupercomputers.

Tobegintounderstandtherequirementsforexascalemachines,ASCRsponsoredaseriesoftownhallmeetings,whichheldopendiscussionsonthemostcriticalandchallengingproblemsinenergy,theenvironmentandbasicscience.Thesemeetingswherethenfollowedbyaseriesoftechnicalworkshops,eachfocusingonaspecificscientificdomain.

TheDOEtownhallsandworkshopshaveidentifiedtheopportunityforexascalecomputingtorevolutionizethewayweapproachchallengesinenergyresearch,environmentalsustainabilityandnationalsecurity.Theyalsoidentifiedtheimpactofexascalecomputingonkeyscienceareaslikebiology,astrophysics,climatescienceandnuclearphysics.

Oneoftheirmostcompellingconclusionsisthatwithexascalecomputing,wearereachingatippingpointinpredictivescience,anareawithpotentiallymajorimplicationsacrossawholerangeofnew,massivelycomplexproblems.Letmeexplain.

HighendsupercomputersaregenerallydesignedforeithercapabilityorcapacitycomputingCapabilitysupercomputersdedicatethewhole(ormostofthe)machinetosolveaverylargeproblemintheshortestamountoftime.Capacitysupercomputers,ontheotherhand,supportlargenumbersofuserssolvingdifferentkindsofproblemssimultaneously.

Whilebothkindsofsupercomputingareveryimportant,initiativesdesignedtopushtheenvelope,likeDOE’sexascaleproject,tendtofocusonthedevelopmentofcapabilitymachinestoaddressGrandChallenge

problemslikethosementionedabove,thatcouldnotbesolvedinanyotherway.

Capabilitycomputinghasbeenprimarilyappliedtowhatissometimesreferredtoasheroiccomputations,wherejustaboutthewholemachineisappliedtoasingletask.And,withoutadoubt,therearequiteanumberofproblemsthatwewillbeabletoaddresswithmachines1000timesmorepowerful.

But,atleastasexciting,isthepotentialforexascalecomputingtoaddressaclassofhighlycomplexproblemsthathavebeenbeyondourreach,notjustduetotheirsheersize,butbecauseoftheirinherentuncertaintiesandunpredictability.Thewaytodealwithsuchuncertaintyistosimultaneouslyrunmultipleensemblesorcopiesofthesameapplications,usingmanydifferentcombinationsofparameters,andthusbeabletoexplorethesolutionspaceoftheseotherwiseunpredictableproblems.Thiswillletussearchforoptimalsolutionstomanyproblemsinscienceandengineering,aswellasenableustocalculatetheprobabilitiesofextremeevents.

Thisnewstyleofpredictivemodelingwillhelpusapplymorescientificmethodologiestomanykindsofproblems,fromclimatestudiestothedesignofsafenuclearreactors.Beyondscienceandengineering,therearemanydisciplinesthatwillbenefitfromsuchpredictivecapabilities,fromeconomicsandmedicinetobusinessandgovernment.

Ensemblecomputinghasattributesofbothcapabilityandcapacitycomputing.Itdevotesthewholemachinetooneproblem,butitdoessobyrunningmanycopiesoftheprobleminparallelwithdifferentinitialconditions.Innovativetechniquesarealreadyemergingtohelpdevelopersbetterprogramandmanagesuchensemble-orientedapplications.

Finally,itisimportantnottounderestimatetheimpactofexascalebreakthroughstomorecapacityorientedmachines,aswellastosmallermachinesthatsharethesametechnologies,architecture,softwareandapplications.Manyoftheinnovationthatwillenableustodevelopexascaleclasssupercomputerswillyieldrelativelyinexpensivepetascaleclasssystemsaswellassmallerones.Thewidertheaccesstosuchfamiliesofsystems,therichertheoverallecosystemincludingapplications,usersandtechnologies.

Inaddition,thesesameexascaleinnovationswillfindwideusageinthemorecommerciallyorientedcloudcomputingsystems.Thetechnologyrequirementsarequitesimilar,especiallytheneedforlowpower,lowcostcomponents.Theyalsosharesimilarrequirementsforhighlyefficient,autonomicsystemmanagement.Onecanactuallyviewcloud-basedsystemsasakindofexascaleclasssupercomputersdesignedtosupportembarrassinglyparallelworkloads,suchasmassiveinformationanalysisorhugenumbersofsensorsandmobiledevices.

InitsStrategyforAmericanInnovation,theObamaadministrationlistedexascalecomputingamongtheGrandChallenges

ofthe21stcenturyinscience,technologyandinnovation,that“willallowthenationtosetandmeetambitiousgoalsthatwillimproveourqualityoflifeandestablishthefoundationfortheindustriesandjobsofthefuture.”Itexplicitlycalledfor.[2]

“Anexascalesupercomputercapableofamilliontrillioncalculationspersecond–dramaticallyincreasingourabilitytounderstandtheworldaroundusthroughsimulationandslashingthetimeneededtodesigncomplexproductssuchastherapeutics,advancedmaterials,andhighly-efficientautosandaircraft.”[3]

Thisisatrulyexcitingandimportantchallenge.1.molecularadj.adv.n.分子状态的;分子式;分子量。

2.remarkableadj.值得注意的;不寻常的。

3.loomn.织布机vi.隐约出现;阴森地逼近。

4.stretchvt.&vi.n.adj.伸展;拉紧;延伸;尽力,全力以赴。

5.resiliencyn.跳回,弹性。

6.ecosystemn. <生>生态系统。

7.sustainabilityn.持续性;能维持性;永续性。Vocabulary

8.compellingadj.引人入胜的;扣人心弦的;非常强烈的;不可抗拒的;令人信服的。

9.simultaneouslyadv.同时地。

10.ensemblen.系集,整体,总效果;合奏,合唱;合奏组。

11.callfor去接(某人),去取(某物);需要;要求。

12.therapeuticsn.[pl.]治疗学,疗法。

13.FLOPS(FLoatingpointOperationsPerSecond)每秒浮点操作数,用于度量浮点计算机速度的单位,见下表。

本文中的exascale是计算机科学家又定义的一个新词,exa来源于上面的表格中,暂且翻译成超大规模计算。

[1]Massivelyparallelarchitectures,usingtenstohundredsofthousandsofprocessorsfromthePCandUNIXmarketshavedominatedsupercomputingoverthepasttwentyyears.Theygotusintotheterascaleandpetascaleranges.But,theywillnotgetustoexascale.AnothermassivetechnologyandarchitecturaltransitionnowloomsforsupercomputingandtheITindustryingeneral.

ImportantSentences近20年来,在PC和UNIX市场上使用几十万个处理器的大规模并行体系机构占主导地位。这使得我们进入了万亿和千万亿计算的范围。但是还不能使我们进入极大规模计算。对于超级计算和信息产业来说,其他的大规模技术和体系结构的转变目前还不明朗。

[2]InitsStrategyforAmericanInnovation,theObamaadministrationlistedexascalecomputingamongtheGrandChallengesofthe21stcenturyinscience,technologyandinnovation,that“willallowthenationtosetandmeetambitiousgoalsthatwillimproveourqualityoflifeandestablishthefoundationfortheindustriesandjobsofthefuture.”Itexplicitlycalledfor.

在“美国创新战略”中,奥巴马政府把超大规模计算作为21世纪科学、技术和创新的重大挑战之一。他们明确号召:这将使得我们建立并达到改善生活质量、建立未来产业和工作岗位的基础的宏伟目标。

[3]Anexascalesupercomputercapableofamilliontrillioncalculationspersecond–dramatically

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论