版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
超精密加工技术概述摘要:随着社会的发展,工业产品精细化程度逐步提高,传统的机械加工技术已经远远不能满足人们的需求,机械加工向着更高精度的方向发展。本文主要介绍超精密加工技术的产生背景、概念、国内外的发展状况、几种超精密加工技术和对未来超精密加工技术发展的展望。关键词:超精密加工技术背景概念发展状况发展趋势一.产生的背景制造技术的发展已经有几千年的历史,石器时代、铜器时代、铁器时代都有着制造技术发展的足迹。直至近代,随着第一次工业革命的完成,传统的机械制造技术出现了,传统的机械加工技术主要包括车削、铣削、钻削和磨削。随着人类社会的进一步发展,现代科学技术的迅猛发展,机械工业、电子工业、航空航天工业、化学工业等,尤其是国防工业部门,要求尖端科学技术产品向高精度、高速度、大功率、小型化方向发展,以及在高温、高压、重载荷或腐蚀环境下长期可靠地工作。为了适应这些要求,各种新结构、新材料和复杂形状的精密零件大量出现,其结构和形状越来越复杂,材料的性能越来越强韧,对精度要求越来越高,对加工表面粗糙度和完整性要求越来越严格,使机械制造面临着一系列严峻的任务:(1)解决各种难切削材料的加工问题。如硬质合金、钛合金、耐热钢、不锈钢、淬火钢、金刚石、石英以及锗、硅等各种高硬度,高强度、高韧性、高脆性的金属及非加工。(2)解决各种特殊复杂型面的加工问题。如喷气涡轮机叶片、整体涡轮、发动机机匣、锻压模等的立体成型表面,各种冲模、冷拔模等特殊断面的型孔,炮管内膛线、喷油嘴,喷丝头上的小孔、窄缝等的加工。(3)解决各种超精密、光整零件的加工问题。如对表面质量和精度要求很高的航天航空陀螺仪、精密光学透镜、激光核聚变用的曲面镜、高灵敏度的红外传感器等零件的精细表面加工,形状和尺寸精度要求在0.1皮米以上,表面粗糙度尺寸要求在0.01微米以上。(4)特殊零件的加工问题。如大规模集成电路、光盘基片、复印机和打印机的感光鼓、微型机械和机器人零件、细长轴、薄壁零件、弹性元件等低刚度零件的加工。;要解决上述一系列问题,仅仅依靠传统的切削加工方法很难实现,有些根本无法实现。在生产的迫切需求下,人们通过各种渠道,借助于多种能量形式,不断研究和探索新的加工方法。超精密和特种加工技术就是在这种环境和条件下产生和发展起来的。二.基本概念和范围制造是用物理或化学的方法改变原材料的几何形状、性质和外观,制成零件以及将零件装配成产品的操作过程,通过这样的过程将原材料转变成具有使用价值和更大经济价值的产品。产品在机械制造的过程中会产生一定的误差,主要有(1)的加工机床的运动误差,如导轨误差、主轴回转误差等等;(2)刀具制造误差与磨损;(3)工艺系统受力变形和受热变形。传统的机械加工技术的误差范围较大,而超精密加工技术由于应用了新的加工介质,改变了原有的加工机理,使加工误差大大降低。超精密加工技术是一种先进的制造技术。超精密加工是指亚微米级(尺寸误差为0.3~0.03微米,表面粗糙度为Ra0.03~0.005微米)和纳米级(精度误差为0.03微米,表面粗糙度小于Ra0.005微米)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精密加工技术。超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刀磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。人们把这种技术总称为超精工程。超精密加工主要包括三个领域:(1)超精密切削加工,如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。(2)超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。(3)超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1微米。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。三.国内外发展现状目前,先进制造技术已经是一个国家经济发展的重要手段之一,许多发达国家都十分重视先进制造技术的水平和发展,利用它进行产品革新、扩大生产和提高国际经济竞争能力。超精密加工技术在国际上处于领先地位的国家有美国、日本和英国等。美国是开展超精密加工技术最早的国家。早在上世纪五十年代末,由于航天等尖端技术的需要,美国首先发展了结果是刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用的球面和非球面的大型零件等等。如美国的LLL实验室和Y-12工厂在美国能源部的支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工各种大型光学设备,加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。该机床与该实验室1984年研制的LODTM大型超精密车床一起仍是现在世界上公认的技术水平最高、精度最高的大型金刚石超精密车床。在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(CUPE)享有较高的声誉,他是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre既可以进行超精密车削,又带有磨头,也可以进行超精密磨削,加工工件的形状精度可达0.1微米,表面粗糙度Ra小于10nm。日本对超精密加工技术的研究相对于美国和英国来说起步较晚,但日本是当今世界上超精密加工技术发展最快的国家。日本通产省于1986年制订了一个“超尖端加工系统研究开发”的大型计划,该计划1987年1月开始执行,约需8年时间完成,计划总经费为150到200亿日元。大型计划由二部份组成:高密度、高能量受激射束技术和三维曲面超高性能机械加工技术。为了保证超精密加工技术成为可能,还有二项辅助技术:超精密测量技术和加工环境的控制技术。高密度、高能量射束技术的研究内容,主要有大输出功率长寿命的准分子激器和高能量离子束技术。当准分子激光照射氮、氯等气体时,其分子分解,蒸发到金属、陶瓷、高分子材料等基础材料表面,形成高性能的薄膜。高密度高能量离子束技术是利用非热平衡过程对材料进行选择性极高的处理或高速处理,以达到局部处理的目的。因此,射束技术的研究,主要为解决难合成材料和高性能材料的合成,高品位薄膜的形成,材料表面质量改进等方面的应用。三维曲面超高性能机械加工技术以超精密加工为中心,包括切削、磨削、研磨和利用射束的新型复合加工技术,主要内容是研制超精密机械加工装置。用切削的方法不可能达到原子级的精度,所以需进一步研究切削机理,发展特种加工技术。机械化学研磨和弹性发射切削加工等方法将从实验室向工业应用发展。我国目前已是一个”制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。但我国还不是一个”制造强国”,与发达国外相比仍有较大差距。我国每年虽有大量机电产品出口,但多数是技术含量较低、价格亦较便宜的中低档产品;而从国外进口的则大多是技术含量高、价格昂贵的高档产品。目前我国每年需进口大量国内尚不能生产的精密数控机床设备和仪器。由于国外一些重要的高精度机床设备和仪器对我国实行封锁禁运,而这些精密设备仪器正是我国发展国防工业和尖端技术所迫切需要的,因此,为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。我国的超精密机床发展现状在过去相当长一段时期,由于受到西方国家的禁运限制,我国进口国外超精密机床严重受限。但当1998年我国自己的数控超精密机床研制成功后,西方国家马上对我国开禁,我国现在已经进口了多台超精密机床。我国北京机床研究所、航空精密机械研究所、哈尔滨工业大学等单位现在已能生产若干种超精密数控金刚石机床。如北京航空精密机械研究所,多年来,自行研制了11台包括超精密车床、超精密镗床、超精密平面磨床、超精密外圆磨床、精密金刚石刀具研磨机、超精密平面研磨机、精密端齿盘研磨机,以及Nanosys-300非球面超精密复合加工机床、偶件超精密磨床等。由303所研制的”非球面曲面超精密加工系统”、”超精密外圆磨床”等超精密加工设备研究成果填补了国内空白,使我国超精密加工技术水平跃上一个新台阶,研究水平跨入国际先进行列。如北京机床研究所研制的加工直径800mm的超精密车床和哈尔滨工业大学研制的超精密车床;还有哈尔滨工业大学研制了加工KDP晶体大平面的超精密铣床。KDP晶体可用于光学倍频,是大功率激光系统中的重要元件。必须承认,在超棈密机床技术方面,我们与国外先进水平相比还有相当大的差距,国产超精密机床的质量水平尚待进一步提高。在大型超精密机床方面,目前美、英、俄等国都拥有自行开发的大型超精密机床,而我国由于没有大型超精密机床,因此无法加工大直径曲面反射镜等大型超精密零件,国外对这些大型超精密零件的出口有严格限制,从而严重影响了我国国防尖端技术的发展。现在我国正在加紧研制加工直径1m以上的立式超精密机床。在多功能和高效专用超精密机床方面,目前我国基本上仍是空白。四.几种主要的超精密加工技术1.高速精密切削技术相对与常规切削而言,用高出很多的切削速度对工件进行切削;通常把切削速度是常规切削速度的5~10倍的切削称为高速切削(有时也称为超高速切削)。高速精密切削技术的优点:高单位时间切除率,缩短制造时间;提高加工表面质量,提高产品质量;切削力,降低加工系统力变形;高激励频率,避免自激振荡;切削热由切屑快速带走,减少工件热变形;减少后续工序,降低加工成本。高速铣削典型工件如铝合金整体零件其特点是整体零件“掏空”,切除量大;零件有薄壁,要求小切削力;小直径刀具;较长的刀具悬伸。2.金刚石车削技术用天然单晶金刚石刀具切削铜、铝等有色金属材料,能得到尺寸精度为0.1微米数量级和表面粗糙度为0.01微米数量级的超高精度加工表面。金刚石车床与镜面铣床相比,其机械结构更为复杂,技术要求更为严格。除了必须满足很高的运动平稳性外,还必须具有很高的定位精度和重复精度。镜面铣削平面时,对主轴只需很高的轴向运动精度,而对径向运动精度要求较低。金刚石车床则须兼备很高的轴向和径向运动精度,才能减少对工件的形状精度和表面粗糙度的影响。金刚石车削早期主要用来加工有色金属如元氧铀或铝合金等,其主要产品是各种光学系统中的反射镜,如射电望远镜的主镜面,LiDA(激光探测)系统中的各镜面以及激光切割机床中的反射镜等。在东西方军备竞赛时期,各种红外光学元件的需求量猛增,金刚石车削可加工各种红外光学材料如锗、硅等,工件的形状多为非球面,这样就可大大减少光学元件的数量,因为红外材料的透射率较低,元件少可提高光学系统的透光性能,另外还可节约昂贵的红外材料。在大批量生产的产品中,光学元件多采用挤压成形或压注成形。成形所用的型腔多采用金刚石车削来完成的。型腔材料除超高强度镍钢外还有工具钢和陶瓷等。超高强度镍钢是模压成形时应用最广的材料,因为它既满足模具的硬度要求,又可用金刚石车削出最佳的形状精度和表面质量。用金刚石刀具加工工具钢时,刀具易产生化学磨损这是因为工具钢中碳元素与金刚石产生化学反应之故。所以此时要在刀架上附加一个超声振动装置,或者改用立方氮化硼刀具进行加工。用金刚石车削直径在100毫米以下的工件时,形状误差可控制在0.1微米以下。工件表面粗糙度除与切削参数及机床特性有关外,还取决于材料的特性,绝大多数可用金刚石车削的材料的表面粗糙度可达到Ra1~5纳米。3.超声振动精密加工超声振动加工是在工具或工件上沿一定方向施加高于20kHz的超声波振动而进行加工和处理的种工艺方法。超声振动加工系统一般由超声波发生器、换能器、变幅杆、振动传递装置和加工工具或处理工具组成。超声振动加工技术是一种多学科交叉的高新技术,在声能、机械能、电能的综合效应作用下,实现各种各样的加工和处理。大量实践证明,当在加工工具或工件上附加了超声振动后,材料在加工过程中的变形行为、加工机制和工具受力状态等就会发生完全不同于常规机械加工的变化,因而具有其它加工方法无法比拟的工艺效果,所以其应用的范围相当广泛。如以超声振动切削为例,在超声振动切削时,由于其切削力只有普通切削的1/3—1/10,可使被加工表面的温度大幅度降低,因而可有效地降低表面粗糙度和显著地提高加工精度,大幅度地提高刀具的使用寿命,解决了许多普通加工方法难以解决的加工问题。其主要的优势有(1)加工材料种类广泛,不受材料导电特性限制,既可加工玻璃、陶瓷、宝石、石英、硅、石墨、金刚石等不导电的非金属材料,又可加工淬火钢、硬质合金、不锈钢、高温合金等硬质或耐热导电的金属材料;(2)特别是加工超硬和脆性材料时具有高效率;(3)由于去除材料主要依靠磨粒瞬时局部的冲击作用,所以工件表面的宏观切削力小、切削温度低,残余应力小,减少表面损伤和微裂纹;具有较高的加工精度和表面质量。4.磁流体抛光技术磁流体抛光技术是在一定磁场作用下,抛光区内的磁流变液中形成的一定硬度的“小磨头”代替传统抛光过程中的刚性抛光盘来加工零件表面的一种新技术。当施加外磁场作用时,磁流变液中的磁性颗粒迅速凝聚,磁流变液粘度增大。由于“小磨头”的形状和硬度可以通过磁场的强度和方向实时控制,而影响抛光的其它因素固定不变,使得磁流体抛光技术既能通过控制磁场的强度和方向来控制抛光区的大小和形状,又能确保在一定磁场强度下抛光区的稳定性、定刚度和韧性的抛光液流体层,提高磨头与工件的吻合性,降低加工过程中元件支撑变形的要求,这些优点是传统刚性抛光盘无法比拟的。磁流体抛光关键技术主要有两点:1、磁流体抛光液的研制。磁流体抛光液要求在无磁场作用时流动性好,有外加磁场作用时流变性好,硬度高且响应快。2、磁流体抛光过程的数字化控制。通过确定磁流体抛光材料的去除率函数,利用材料去除量控制设备监控工件表面的去除量,进而实现闭环控制,达到抛光过程的数字化控制。磁流体抛光这种新兴的零件加工方法由于其加工速度快,效率高,能耗低,不产生下表面破坏层及易于实现微机数控等优点,具有极大的市场价值和广阔的应用前景。五.超精密加工的发展展望超精密加工将向高精度、高效率、大型化、微型化、智能化、工艺整合化、在线加工检测一体化、绿色化等方向发展。1.高精度、高效率随着科学技术的不断进步,对精度、效率、质量的要求。来愈高,高精度与高效率成为超精密加工永恒的主题。超精密切削、磨削技术能有效提高加工效率,CMP、EEM技术能够保证加工精度,而半固着磨粒加工方法及电解磁力研磨、磁流变磨料流加工等复合加工方法由于能兼顾效率与精度的加工方法,成为超精密加工的趋势。2.大型化、微型化由于航天航空等技术的发展,大型光电子器件要求大型超精密加工设备,如美国研制的加工直径为2.4~4m的大型光学器件超精密加工机床。同时随着微型机械电子、光电信息等领域的发展,超精密加工技术向微型化发展,如微型传感器,微型驱动元件和动力装置、微型航空航天器件等都需要微型超精密加工设备。3.智能化以智能化设备降低加工结果对人工经验的依赖性一直是制造领域追求的目标。加工设备的智能化程度直接关系到加工的稳定性与加工效率,这一点在超
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业劳务派遣业务合作加盟合同版B版
- 全新二零二四年度农产品居间经纪合同2篇
- 商场黄金地段短期转租协议(2024版)2篇
- 2024年度甲乙双方关于出版图书的合同2篇
- 2024停车场长期租赁承包经营合同样本版B版
- 2024专项远期交货合同版B版
- 2024献县教师合同制讲解员
- 2024年事业单位采购项目协议修订版版B版
- 2024年分公司项目承包协议模板版B版
- 2024企业间短期借款协议样本
- 2024年度宠物用品销售合同
- 低压电工作业(复审)模拟考试题库试卷
- GB/T 44831-2024皮肤芯片通用技术要求
- 农业气象学-作业4-国开(ZJ)-参考资料
- 2024年廉洁合作原则声明书
- EE-华为智慧供应链ISC规划项目-05业务服务化架构设计-2016
- 2024-2030年中国物业管理行业深度调研及发展模式分析报告
- 2022年大学物理学专业大学物理二期末考试试题-附解析
- 2024年广西普法考试答案8
- 数学-湖北华中师范大学一附中2024高二上数学周测和解析(11月2)
- Unit 4 Section B(1a-2b)(同步课件)-2024-2025学年初中英语七年级上册同步课件(人教版2024)
评论
0/150
提交评论