《二次根式》复习课说课稿范文_第1页
《二次根式》复习课说课稿范文_第2页
《二次根式》复习课说课稿范文_第3页
《二次根式》复习课说课稿范文_第4页
《二次根式》复习课说课稿范文_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《二次根式》复习课说课稿范文第1篇:《二次根式》复习课说课稿范文一、教学内容与学情分析1.本课在教材、新课标中的地位与作用本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册第十六章后的一个总结复习。二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。同时也是为了学生能够在下一张勾股定理以及九年级的解直角三角形学习中打下一些有效的基础。关于二次根式在《数学课程标准》中提出要求:1.了解二次根式的概念及其加、减、乘、除运算法则;2.会用它们进行有关实数的简单四则运算(不要求分母有理化);在本章内容新授过程中,教师更多的关注了学生对概念及运算法则的讲解,对方法、技巧、能力等各方面并没有对学生作出更高的要求,同时学生本身在学习新课知识时,也是一种模糊的感觉。对课程标准提出的第2点:会用它们进行有关实数的简单四则运算并不能很有效的完成。而本节复习课的教学将给学生一个巩固提高的机会,让大多数学生能加深对二次根式的运算的理解,同时更是为学生掌握更多的学习方法、学习技巧,提高学生的能力提供机会。彻底地贯彻课程标准所提出的要求,完成九年级学生应完成的任务。2.本课知识点与前后知识点的联系本课内容是综合*复习,所讲知识点学生基本都熟悉未完,继续阅读

>第2篇:二次根式的乘法说课稿范文一、教学目标1.使学生能够利用积的算术平方根的*质进行二次根式的化简与运算.2.会进行简单的二次根式的乘法运算.3.使学生能联系几何课中学习的勾股定理解决实际问题.二、教学重点和难点1.重点:会利用积的算术平方根的*质化简二次根式.2.难点:二次根式的乘法与积的算术平方根的关系及应用.重点难点分析:本节的教学重点是利用积的算术平方根的*质进行二次根式的计算和化简.积的算术平方根的*质是本节的中心内容,化简和运算都是围绕其进行的,而运用此*质计算化简又是二次根式的化简和混合运算的基础.二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起.本节难点是二次根式的乘法与积的算术平方根的关系及应用.积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识.要让学生认识到积的算术平方根*质与根式的乘法公式是互为逆运算的关系。综合应用*质或乘法公式时要注意题目中的条件一定要满足.三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法.1.由于*质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开.在讲解二次根式的乘法时可以结合积的未完,继续阅读

>第3篇:高中二次根式说课稿一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。小编收集了高中二次根式说课稿,仅供大家参考!尊敬的各位领导和老师前辈们:大家好!今天我说课的内容是人教版八年级(下册)第16章第一节《二次根式》。下面,我就从教材分析,教法与学法,教学过程的设计等方面谈自己的看法。一、说教材1教材的地位及作用“二次根式”是《课程标准》“数与代数”的重要内容。本章是在学习了实数(平方根;立方根)的基础上,进一步研究二次根式的概念,*质,和运算。本章内容与“实数”“整式”“勾股定理”联系紧密,同时也是学习二次根式的化简和运算的依据,因此本节课是本章的关键。2、教学目标(1)知识目标:①经历二次根式概念的发生过程,掌握二次根式的概念;②理解二次根式何时有意义,会在简单情况下求被开方数中所含字母的取值范围;③灵活运用二次根式的双重非负*质。(2)能力目标:经历探索二次根式是否有意义,发展学生观察、分析、发现问题的能力。(3)情感态度:培养学生准确归纳的科学精神。3教学重点难点(1)教学重点:二次根式的概念及其被开方数非负*的灵活运用(2)教学难点:二次根式中字母的取值范围;二次根式双重非负*的应用二、说教法教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合未完,继续阅读

>第4篇:二次根式的加减说课稿二次根式的加减说课稿怎么写,老师们是不是也在发愁呢?下面是小编为大家收集的关于二次根式的加减说课稿,欢迎大家阅读借鉴!尊敬的各位评委,大家好,今天我说课的内容是人教版义务教育课程标准试验教科书数学八年级下册,第十六章《二次根式》第三节《二次根式的加减》第一课时。下面我将从教材、学情、教法、学法、教学过程和板书设计等六个方面进行陈述。一.说教材1、教材地理位置和作用二次根式的加减是八年级下册第16章第3节内容,是实数的一种基本运算。本节是在上节学习的化简二次根式的基础上,进一步学习二次根式的加减。在化简二次根式的同时,引导学生概括出同类二次根式的概念,类比整式的加减运算中的合并同类项,给出二次根式的加减运算法则,进而进行二次根式的加减混合运算。2、教学三维目标知识与能力:1、了解同类二次根式的概念,掌握判断同类二次根式的方法;2、学生能正确合并同类二次根式,进行二次根式的加减运算。过程与方法:正确掌握合并同类二次根式的方法,培养学生思维能力及运算能力。情感、态度与价值观:从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩*唯物主义思想,通过二次根式的加减,渗透二次根式化简合并后的形式简单美。3、说教学重、难点教学重点:同类二次根式的概念;掌握二次根式的未完,继续阅读

>第5篇:《二次根式加减》说课稿一、说教材的地位和作用1、内容:二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.2.本节在教材中的地位与作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第*章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础二、说教学目标、重点、难点:1、教学目标:(1)知识与技能:1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.理解和掌握二次根式加减的方法.3.运用二次根式、化简解应用题.4.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.(2)数学思考:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(3)情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次未完,继续阅读

>第6篇:高三复习课《二项式定理》说课稿范文高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对*,讲求实效。一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。(3)二项式定理是解决某些整除*、近似计算等问题的一种方法。2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求未完,继续阅读

>第7篇:《二次根式复习课》教学反思教学背景:本课是因教研室来校听课指导的情况下设计的,由于课时紧,第二天要进行月考,故必须安排一节课进行《二次根式》的复习。设计学习卷一份,既要考虑堂上复习需要,又要考虑课后练习布置,故安排的题量较充足。同时配合使用ppt课件进行知识框架的复习,以及将学习卷内容在课件上演示,方便讲评。教学实施情况:复习本章知识框架,做ppt课件上6道判断题用时10分钟。做课前小测及讲评用时约8分钟,做典型题组及讲评用时约22分钟(主要针对中下生)。所有练习均为学生先做后学(难题、易错题老师讲评)。多数同学能在堂上完成到题组训练部分。改进措施:总的来说本课能完成既定的目标,但细节上个别题目的安排可能要作修改,如小测题第3小题“不改变根式的大小把根式外的因式移到根号内”难度跨度大,在此处可暂时不做此类题,改为做分母有理化的题,如等化简是学生的难点,要重点解决,保*基本题过关。这样也使到在做问题2(2)小题时可顺利一些。另外在复习知识框架时穿*问题1的练习,可避免概念复习的抽象化,也节约了时间。对问题1的第(3)题在重点班可去掉“最简二次根式”的条件,要求会写出求a值的过程,且不限一个解答。(本题的变式题在第二天的月考中就出现了)。另题组训练中三个层次:最基本题组、基本题组、变式题组的难度相应为a组、b组未完,继续阅读

>第8篇:二次根式的乘除第一课时的说课稿各位评委大家下午好:今天我说课的内容是八年级下册第十二章第二节的第一课时《12.2二次根式的乘除(1)》。通过对教材及学生实际情况的分析,我将从检查预习,自主学习,合作交流,展示质疑,拓展提高、总结检测六个方面展开教学。(一)检查预习1.在上课前一天将学案发给学生,引导学习预习。上课最初5分钟检查学生的预习情况。课程标准要求学生“学会自己预习”,因此要求学生课前通过教材自主预习掌握新知识,掌握知识之间的联系,上课以自检,小组互检和课堂检查相结合的方式督促。在检查预习部分我设计了两个自学内容,自学一重点是特殊的二次根式相乘,让学生自己发现规律;自学二是一般的二次根式相乘,学生可以利用正方形面积减去其他三角形的面积求出矩形的面积,而矩形的面积还等于长乘以宽,进而得到×=4,同样得到规律,进而总结出二次根式乘法公式。2.检查预习的过程中已经进入了新课,这样避免了情景导入后因检查预习造成的情感脱节。3.出示学习目标,让学生明确学习目标,上课才有了学习的方向,也便于学生课后自我评价。(二)自主学习:学讲开放课堂也是在培养学生学会自学,因此我设计这个环节,让学生自己打开教材,自主学习,多媒体出示学习要求,方法指导,学生在自主设计的基础上小组合作推选出代表发言,然后用小黑板展示各组成果。老师最后未完,继续阅读

>第9篇:二次根式复习题为了提高数学学习效率,学生必须有时间、有机会的对自己的知识进行测试。因式分解同步练习(解答题)解答题9.把下列各式分解因式:①a2+10a+25②m2-12mn+36n2③xy3-2x2y2+x3y④(x2+4y2)2-16x2y210.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.*:9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2因式分解同步练习(填空题)填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)27.-4x2+4xy+(_______)=-(_______).8.已知a2+14a+49=25,则a的值是_________.*:5.y26.-30ab7.-y2;2x-y8.-2或-12因式分解同步练习(选择题)选择题1.已知y2+my+16是完全平方式,则m的值是()a.8b.4c.±8d.±42.下列多项式能用完全平方公式分解因式的是()a.x2-6x-9b.a2-16a+32c.x2-2xy+4y2d.4a2-4a+13.下列各式属于正确分解因式未完,继续阅读

>第10篇:最简二次根式简要说课稿作用与地位作为二次根式乘、除法与加减法的过渡桥梁的“最简二次根式”这一节课在本章中起着承上启下的作用,必须先复习与巩固已学过的乘、除法知识。另一方面,本小节的内容,显然是下一小节“二次根式的加减法”的基础,因为加减法就是在识别“同类的”最简二次根式的前提下进行的。目的与要求本课的内容比较单纯,就是要求学生掌握化简一个二次根式成最简二次根式的方法。当然,这首先需要知道什么是最简二次根式(即本节课的重点),让学生了解最简二次根式的概念,不在于能否背出定义,关键还是遇到实际式子能够加以判断(也就是本节课的难点),所以应在练习中让学生熟悉这个概念。我采用启发

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论