




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省绥化市安达第七中学数学高一上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+2.已知a,b∈(0,+∞),函数f(x)=alog2x+b的图象经过点(4,1)A.6-22 B.C.4+22 D.3.下列命题中是真命题的个数为()①函数的对称轴方程是;②函数的一个对称轴方程是;③函数的图象关于点对称;④函数的值域为A1 B.2C.3 D.44.下面四个不等式中不正确的为A. B.C. D.5.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.6.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根7.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}8.设,,下列图形能表示从集合A到集合B的函数图像的是A. B.C. D.9.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.10.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增二、填空题:本大题共6小题,每小题5分,共30分。11.已知与之间的一组数据如下,且它们之间存在较好的线性关系,则与的回归直线方程必过定点__________12.已知函数,则______13.关于函数有下述四个结论:①是偶函数②在区间单调递增③的最大值为1④在有4个零点其中所有正确结论的编号是______.14.据资料统计,通过环境整治.某湖泊污染区域的面积与时间t(年)之间存在近似的指数函数关系,若近两年污染区域的面积由降至.则使污染区域的面积继续降至还需要_______年15.若,则的定义域为____________.16.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(1)求;(2)若,求实数的取值范围.18.如图,某地一天从6~14时的温度变化曲线近似满足函数(,).(1)求这一天6~14时的最大温差;(2)写出这段曲线的解析式;(3)预测当天12时的温度(,结果保留整数).19.已知向量,满足,,.(1)求向量与夹角;(2)求的值.20.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)(1)求(万元)与(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?21.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B2、D【解析】由函数f(x)=alog2x+b的图象经过点(4,1)得到2a+b=1【详解】因为函数f(x)=alog2x+b图象经过点(4,1),所以有alog24+b=1⇒2a+b=1,因为a,b∈(0,+∞),所以有(故选:D【点睛】本题考查了基本不等式的应用,用“1”巧乘是解题的关键,属于一般题.3、B【解析】根据二次函数的性质、三角函数的性质以及图象,对每个选项进行逐一分析,即可判断和选择.【详解】对①:函数的对称轴方程是,故①是假命题;对②:函数的对称轴方程是:,当时,其一条对称轴是,故②正确;对函数,其函数图象如下所示:对③:数形结合可知,该函数的图象不关于对称,故③是假命题;对④:数形结合可知,该函数值域为,故④为真命题.综上所述,是真命题的有2个.故选:.4、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题5、D【解析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【点睛】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、B【解析】根据全称命题的否定为特称命题可得出.【详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.7、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算8、D【解析】从集合A到集合B的函数,即定义域是A,值域为B,逐项判断即可得出结果.【详解】因为从集合A到集合B的函数,定义域是A,值域为B;所以排除A,C选项,又B中出现一对多的情况,因此B不是函数,排除B.故选D【点睛】本题主要考查函数图像,能从图像分析函数的定义域和值域即可,属于基础题型.9、C【解析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【详解】正五边形的一个内角为,则,,,所以故选:C.10、B【解析】根据给定的对应值表,逐一分析各选项即可判断作答.【详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为与的回归直线方程必过定点则与的回归直线方程必过定点.即答案为.12、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.13、①③【解析】利用奇偶性定义可判断①;时,可判断②;分、时求出可判断故③;时,由可判断④.【详解】因为,,所以①正确;当时,,当时,,,时,单调递减,故②错误;当时,,;当时,,综上的最大值为1,故③正确;时,由得,解得,由不存在零点,所以在有2个零点,故④错误.故答案为:①③.14、2【解析】根据已知条件,利用近两年污染区域的面积由降至,求出指数函数关系的底数,再代入求得污染区域将至还需要的年数.【详解】设相隔为t年的两个年份湖泊污染区域的面积为和,则可设由题设知,,,,即,解得,假设需要x年能将至,即,,,解得所以使污染区域的面积继续降至还需要2年.故答案为:215、【解析】使表达式有意义,解不等式组即可.【详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.16、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)可利用数轴求两个集合的交集;(2)根据子集关系列出不等式组,解不等式组即可【详解】(1)(2)因为,所以当时,有,解得,所以实数的取值范围是【点睛】解决集合问题应注意的问题:①认清元素的属性:解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件;②注意元素的互异性:在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误;③防范空集:在解决有关,等集合问题时,往往忽略空集的情况,一定要先考虑是否成立,以防漏解18、(1)20℃;(2)();(3)27℃.【解析】(1)观察图象求出函数的最大、最小值即可计算作答;(2)根据给定图象求出解析式中相关参数,即可代入作答;(3)求出当时的y值作答.【小问1详解】观察图象得:6时的温度最低为10℃,14时的温度最高为30℃,所以这一天6~14时的最大温差为20℃.【小问2详解】观察图象,由解得:,周期,,即,则,而当时,,则,又,有,所以这段曲线的解析式为:,.小问3详解】由(2)知,当时,,预测当天12时的温度为27℃.19、(1)(2)【解析】(1)先求得,然后利用夹角公式求得向量与的夹角.(2)利用平方的方法求得的值.【小问1详解】设向量与的夹角为,由于,所以.所以,由于,所以.【小问2详解】.20、(1)();(2)当年产量为件时,所得年利润最大,最大年利润为万元.【解析】(1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数解析式,求出最大值点和最大值即可【详解】(1)由题意得:当时,,当时,,故();(2)当时,,当时,,而当时,,故当年产量为件时,所得年利润最大,最大年利润为万元.【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019-2025年基金从业资格证之私募股权投资基金基础知识强化训练试卷B卷附答案
- 2025职员雇佣合同2
- 2025工程合同管理台帐B
- 基层治理金点子建议
- 2025企业员工试用期合同范本
- 个人住房借款保证合同样本
- 人防工程专用合同样本
- 农业公司加盟合同样本
- 个人商业购房合同样本
- 保洁临时聘用合同样本
- 中国到欧洲的主要航线图
- 小说中景物描写的作用
- 平面向量与三角形的四心问题-高三理科数学复习讲义与跟踪训练含解析
- 收获机械-往复式切割器的工作原理
- 河北省唐山市迁安市2021-2022年三年中考二模英语试题分类汇编:语法填空
- 蓄电池单轨吊设计选型方案及技术规格书
- 怎样培养小学生学习科学兴趣
- 人文地理学(王恩涌)
- 冀教版四年级下册英语全册教学设计
- 四川宜宾市2023年中考英语试题及答案(Word版)
- GB/T 5267.1-2002紧固件电镀层
评论
0/150
提交评论