专题直角三角形斜边上的中线的运用(原卷版)_第1页
专题直角三角形斜边上的中线的运用(原卷版)_第2页
专题直角三角形斜边上的中线的运用(原卷版)_第3页
专题直角三角形斜边上的中线的运用(原卷版)_第4页
专题直角三角形斜边上的中线的运用(原卷版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级下册数学《第十八章平行四边形》专题直角三角形斜边上的中线的运用题型题型一利用直角三角形斜边上的中线求线段长【例题1】(2022春•镇江期末)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.【变式11】如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=3,则AB的长为.【变式12】(2022秋•海口期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD于点D,过点D作DE∥AC,交AB于点E,若AB=6,则DE的长为()A.2.5 B.3 C.3.5 D.4【变式13】如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.23【变式14】如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3 B.4 C.5 D.6【变式15】(2022秋•工业园区校级期中)如图∠ADB=∠ACB=90°,E、F分别是AB、CD的中点,若AB=26,CD=24,则△DEF的周长为()A.12 B.30 C.27 D.32【变式16】(2022春•南岗区校级期中)如图,△ABC中,∠ACB=90°,D是AB的中点,过点D作AB的垂线,交BC于E,连接CD,AE,CD=4,AE=5,则AC=()A.3 B.245 C.5 D.【变式17】(2021•饶平县校级模拟)如图,在三角形ABC中,AB=AC,BC=6,三角形DEF的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=()A.5 B.7 C.3 D.7【变式18】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.27题型二题型二利用直角三角形斜边上的中线求角度【例题2】(2022秋•莲湖区期中)如图所示,在Rt△ABC中,∠ACB=90°,∠A=62°,CD⊥AB,垂足为D,点E是BC的中点,连接ED,则∠EDB的度数是.【变式21】如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA延长线于点E,若∠E=35°,则∠BDA的度数是.【变式22】(2022秋•仓山区校级期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD,若∠BAD=52°,则∠EBD=°.【变式23】(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=3,则∠ACDA.15° B.30° C.22.5° D.45°【变式24】(2021秋•潍坊期末)如图,四边形ABCD中,∠ADC=∠ABC=90°,E为对角线AC的中点,∠DAC=30°,∠CAB=40°,连结BE,DE,BD,则∠BDE=度.【变式25】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,∠ECD是度.【变式26】(2021秋•温州期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=°.【变式27】如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=80°,那么∠GHE等于()A.5° B.10° C.20° D.30°【变式28】(2022秋•市中区校级月考)如图,已知△ABC中,∠ACB=90°,O为AB的中点,点E在BC上,且CE=AC,∠BAE=15°,求∠COE的度数.题型三题型三利用直角三角形斜边上的中线性质证明【例题3】如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.【变式31】(2022春•零陵区校级期中)如图,△ABC中,BE平分∠ABC,BE⊥AF于F,D为AB中点,请说明DF∥BC的理由.【变式32】(2021秋•虹口区校级期末)如图,已知△ABC的高BD、CE相交于点O,M、N分别是BC、AO的中点,求证:MN垂直平分DE.【变式33】如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,DC=BF,点E是CF的中点.(1)求证:DE⊥CF;(2)求证:∠B=2∠BCF.【变式34】如图,在△ABC中,∠BAC=90°,AD是中线,E是AD中点,过A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【变式35】在Rt△ABC中,∠ABC=90°,BD为∠ABC的角平分线,F为AC的中点,AE∥BC交BD的延长线于点E,其中∠FBC=2∠FBD.(1)求∠EDC的度数.(2)求证:BF=AE.【变式36】已知,如图,在Rt△ABC中,∠C=90°,点E在AC上,AB=12DE,AD∥求证:∠CBA=3∠CBE.【变式37】如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.【变式38】(2021•安顺模拟)如图,在△ABC中,点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=1(2)若EF⊥AC,求证:AM+DM=CB.【变式39】(2022秋•宿城区期中)如图,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明你的猜想.(3)当∠BAC变为钝角时,如图②,上述(1)(2)中的结论是否都成立?若成立,直接回答,不需证明;若不成立,请说明理由.题型四题型四三角形中位线与直角三角形斜边上的中线综合应用证明角关系【例题4】(2022秋•平昌县期末)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=6,则DF的长为()A.1.5 B.1 C.0.5 D.2【变式41】(2022春•南岗区校级期中)如图,在△ABC中,D,E分别是AB,AC的中点,连接ED,F是ED延长线上一点,连接AF、CF,若∠AFC=90°,DF=1,AC=6,则BC的长度为()A.2 B.3 C.4 D.5【变式42】(2022•金乡县三模)如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E、F分别是AB、AC边的中点,若AB=8,AC=6,则△DEF的周长为.【变式43】如图,△ABC的周长为16,G、H分别为AB、AC的中点,分别以AB、AC为斜边向外作Rt△ADB和Rt△AEC,连接DG、GH、EH,则DG+GH+EH的值为()A.6 B.7 C.8 D.9【变式44】(2022春•大足区期末)如图,在Rt△ABC中∠ACB=90°,∠A=30°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC,若EF=2,则A.2 B.1 C.3 D.3【变式45】(2021春•赣榆区期中)如图,在△ABC中,E、F分别是AB、AC的中点,延长EF交△ABC的外角∠ACD的平分线于点G.AG与CG有怎样的位置关系?证明你的结论.【变式46】(2022春•海淀区校级期中)如图,在△ABC中,点D,点E分别是边AC,AB的中点,点F在线段DE上,AF=5,BF=12,AB=13,BC=19,求DF的长度.【变式47】(2022春•徐州期中)已知:如图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论