版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市市三女中数学高二上期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)2.已知是椭圆上的一点,则点到两焦点的距离之和是()A.6 B.9C.14 D.103.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)4.设抛物线的焦点为,点为抛物线上一点,点坐标为,则的最小值为()A. B.C. D.5.已知数列中,,则()A.2 B.C. D.6.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.7.已知双曲线:的右焦点为,过的直线(为常数)与双曲线在第一象限交于点.若(为原点),则的离心率为()A. B.C. D.58.已知直线与直线垂直,则a=()A.3 B.1或﹣3C.﹣1 D.3或﹣19.双曲线的焦点到渐近线的距离为()A. B.2C. D.10.若是函数的一个极值点,则的极大值为()A. B.C. D.11.如图,函数的图象在P点处的切线方程是,若点的横坐标是5,则()A. B.1C.2 D.012.过点且斜率为的直线方程为()A. B.C D.二、填空题:本题共4小题,每小题5分,共20分。13.某教师组织本班学生开展课外实地测量活动,如图是要测山高.现选择点A和另一座山顶点C作为测量观测点,从A测得点M的仰角,点C的仰角,测得,,已知另一座山高米,则山高_______米.14.已知数列的前n项和为,则取得最大值时n的值为__________________15.如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,是上底面上其余的八个点,则集合中的元素个数为______16.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和,数列是各项均为正数的等比数列,其中,且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.18.(12分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.19.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.20.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围21.(12分)在平面直角坐标系中,点,直线轴,垂足为H,,圆N过点O,与l的公共点的轨迹为(1)求的方程;(2)过M的直线与交于A,B两点,若,求22.(10分)已知函数.(1)当时,求的单调区间与极值;(2)若在上有解,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量线性运算的坐标表示即可得出答案.【详解】解:因为,,所以.故选:B.2、A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A3、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题4、B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,进而把问题转化为求|PM|+|PD|的最小值,即可求解【详解】解:由题意,设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,当D,P,M三点共线时,|PM|+|PD|取得最小值为故选:B5、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.6、D【解析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D7、D【解析】取双曲线的左焦点,连接,计算可得,即.设,则,,解得:,利用勾股定理计算可得,即可得出结果.【详解】取双曲线的左焦点,连接,,则因为,所以,即.,.设,则,,解得:.,,..故选:D8、D【解析】根据,得出关于的方程,即可求解实数的值.【详解】直线与直线垂直,所以,解得或.故选:D.9、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A10、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D11、C【解析】函数的图象在点P处的切线方程是,所以,在P处的导数值为切线的斜率,2,故选C考点:本题主要考查导数的几何意义点评:简单题,切线的斜率等于函数在切点的导函数值12、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用正弦定理可求出各个三角形的边长,进而求出山高.【详解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案为:.14、①.13②.##3.4【解析】由题可得利用函数的单调性可得取得最大值时n的值,然后利用,即求.【详解】∵,∴当时,单调递减且,当时,单调递减且,∴时,取得最大值,∴.故答案为:13;.15、1【解析】根据空间平面向量的运算性质,结合空间向量垂直的性质、空间向量数量积的运算性质进行求解即可.【详解】由图像可知,,则因为棱长为1,,所以,所以,故集合中的元素个数为1故答案为:116、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)利用求出数列的通项,再求出等比数列的公比即得解;(2)求出,再利用错位相减法求解.【小问1详解】解:,.当时,,适合..设等比数列公比为,,,即,或(舍去),.【小问2详解】解:,,,上述两式相减,得,所以所以.18、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系可得出关于的方程,解出的值,即可得出结论.【小问1详解】证明:因为为圆的一条直径,且是圆上异于、的点,故,又因平面平面,平面平面,平面,所以平面.【小问2详解】解:存在,理由如下:如图,以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,则,,,,,,由直线平面且过点,以及平面,得,设,则,,,设平面的法向量为,则则,即,取,得,易知平面的法向量,设直线与平面所成的角为,平面与平面的夹角为,则,,由,得,即,解得,所以当点与点重合时,直线与平面所成的角和平面与平面的夹角相等.19、(1)(2)【解析】(1)利用到直线的距离求得半径,由此求得圆的方程.(2)结合到直线的距离来求得四边形面积的最小值.【小问1详解】圆的半径,圆的方程为.【小问2详解】由四边形的面积知,当时,面积最小.此时...20、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.21、(1);(2).【解析】(1)设出圆N与l的公共点坐标,再探求出点N的坐标,并由圆的性质列出方程化简即得.(2)设出直线AB的方程,与的方程联立,结合已知条件并借助韦达定理计算作答.【小问1详解】设为圆N与l的公共点,而直线轴,垂足为H,则,又,,于是得,因O,P在圆N上,即,则有,化简整理得:,所以的方程为.【小问2详解】显然直线AB不垂直于y轴,设直线AB的方程为,,由消去x并整理得:,则,因为,则点A到x轴距离是点B到x轴距离的2倍,即,由解得或,则有,因此有,所以.22、(1)在上单调递减,在上单调递增,函数有极小值,无极大值(2)【解析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分和两种情况分析求解,当时,不等式变形为在,上有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年小学班主任例会制度范文(二篇)
- 2024年国际专利技术许可合同例文(三篇)
- 2024年实习期个人工作总结参考模板(七篇)
- 2024年员工试用期工作总结例文(三篇)
- 2024年基本公共卫生工作问责制度范例(二篇)
- 2024年学生会部员量化考核制度例文(四篇)
- 2024年天猫运营主管岗位的具体职责概述范文(二篇)
- 【提升新时代建筑施工企业行政管理工作效果探究开题报告1800字】
- 2024年学生暑假学习计划范例(二篇)
- 【《企业销售人员激励问题及策略探析-以查尔斯电子公司为例(数据论文)》13000字】
- 椎管内麻醉的相关新进展
- 河北省衡水中学2022-2023学年高一上学期综合素质检测二数学试题含解析
- 《中国溃疡性结肠炎诊治指南(2023年)》解读
- 办理宽带拆机委托书
- 2024年ACOG-《第一产程及第二产程管理》指南要点
- 一线员工安全心得体会范文(3篇)
- 2高空作业安全技术交底(涉及高空作业者交底后必须签字)
- 牛顿第三定律说课市公开课一等奖省赛课微课金奖课件
- (2024年)北京师范大学网络教育《教育学原理》欢迎您
- 火车站物流园区建设项目物有所值评价报告
- 2024年工装夹具相关项目营销策略方案
评论
0/150
提交评论