贵州省黔东南州剑河县第四中学2025届数学高二上期末检测模拟试题含解析_第1页
贵州省黔东南州剑河县第四中学2025届数学高二上期末检测模拟试题含解析_第2页
贵州省黔东南州剑河县第四中学2025届数学高二上期末检测模拟试题含解析_第3页
贵州省黔东南州剑河县第四中学2025届数学高二上期末检测模拟试题含解析_第4页
贵州省黔东南州剑河县第四中学2025届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔东南州剑河县第四中学2025届数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,都有”的否定为()A.,使得 B.,使得C.,使得 D.,使得2.已知直线过点,,则直线的方程为()A. B.C. D.3.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.34.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.5.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.96.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm7.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件8.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.9.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种10.若实数,满足约束条件,则的最小值为()A.-3 B.-2C. D.111.在正项等比数列中,,,则()A27 B.64C.81 D.25612.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠1二、填空题:本题共4小题,每小题5分,共20分。13.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的体对角线长为___________.14.若直线:x-2y+1=0与直线:2x+my-1=0相互垂直,则实数m的值为________.15.在空间直角坐标系中,已知,,,,则___________.16.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x()为二次函数的关系(如图),则每辆客车营运年数为________时,营运的年平均利润最大三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等比数列中,是与的等比中项,与的等差中项为6(1)求的通项公式;(2)设,求数列前项和18.(12分)已知椭圆,其焦点为,,离心率为,若点满足.(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点,的重心满足:,求实数的取值范围.19.(12分)年月日,中国向世界庄严宣告,中国脱贫攻坚战取得了全面胜利,现行标准下万农村贫困人口全部脱贫,个贫困县全部摘帽,万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务,困扰中华民族几千年的绝对贫困问题得到了历史性的解决!为了巩固脱贫成果,某农科所实地考察,研究发现某脱贫村适合种植、两种经济作物,可以通过种植这两种经济作物巩固脱贫成果,通过大量考察研究得到如下统计数据:经济作物的亩产量约为公斤,其收购价格处于上涨趋势,最近五年的价格如下表:年份编号年份单价(元/公斤)经济作物的收购价格始终为元/公斤,其亩产量的频率分布直方图如下:(1)若经济作物的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计年经济作物的单价;(2)用上述频率分布直方图估计经济作物的平均亩产量(每组数据以区间的中点值为代表),若不考虑其他因素,试判断年该村应种植经济作物还是经济作物?并说明理由附:,20.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标21.(12分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若以为直径的圆过坐标原点,求的值.22.(10分)已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据命题的否定的定义判断【详解】全称命题的否定是特称命题,命题“,都有”的否定为:,使得故选:A2、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C3、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.4、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D5、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B6、A【解析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【详解】由题意可得,,解得.故选:A7、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.8、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A9、B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B10、B【解析】先画出可行域,由,作出直线向下平移过点A时,取得最小值,然后求出点A的坐标,代入目标函数中可求得答案【详解】由题可得其可行域为如图,l:,当经过点A时,取到最小值,由,得,即,所以的最小值为故选:B11、C【解析】根据等比数列的通项公式求出公比,进而求得答案.【详解】设的公比为,则(负值舍去),所以.故选:C.12、D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】先根据棱锥的体积求出正方体的棱长,进而求出正方体的体对角线长.【详解】如图,连接,设正方体棱长为,则.所以,体对角线.故答案为:.14、1【解析】由两条直线垂直可知,进而解得答案即可.【详解】因为两条直线垂直,所以.故答案为:1.15、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.16、5【解析】首先根据题意得到二次函数的解析式为,再利用基本不等式求解的最大值即可.【详解】根据题意得到:抛物线的顶点为,过点,开口向下,设二次函数的解析式为,所以,解得,即,则营运的年平均利润,当且仅当,即时取等号故答案为:5.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设出等比数列的公比,根据给定条件列出方程求解作答.(2)由(1)的结论求出,再利用分组求和法计算作答.【小问1详解】设等比数列公比为,依题意,,即,解得,所以的通项公式【小问2详解】由(1)知,,.18、(1)(2)【解析】(1)运用椭圆的离心率公式,结合椭圆的定义可得在椭圆上,代入椭圆方程,求出,,即可求椭圆的方程;(2)设出直线方程,联立直线和椭圆方程,利用根与系数之间的关系、以及向量数量积的坐标表示进行求解即可.【小问1详解】依题意得,点,满足,可得在椭圆上,可得:,且,解得,,所以椭圆的方程为;【小问2详解】设,,,,,,当时,,此时A,B关于y轴对称,则重心为,由得:,则,此时与椭圆不会有两交点,故不合题意,故;联立与椭圆方程,可得,可得,化为,,,①,设的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,则,,令,则,可得,,,.【点睛】本题主要考查椭圆的方程以及直线和椭圆的位置关系的应用,利用消元法转化为一元二次方程形式是解决本题的关键.19、(1),元/公斤;(2)应该种植经济作物;理由见解析【解析】(1)利用表格数据求出中心点值,再利用最小二乘法求出回归直线方程,进而利用所求方程进行预测;(2)先利用频率分布直方图的每个小矩形面积之和为1求得值,再利用平均值公式求其平均值,再比较两种作物的亩产量进行求解.【详解】(1),,则关于回归直线方程为当时,,即估计年经济作物的单价为元/公斤(2)利用频率和为得:,所以经济作物的亩产量的平均值为:,故经济作物亩产值为元,经济作物亩产值为元,应该种植经济作物20、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解】设的坐标为,,解得,.故的坐标为.21、(1);(2)【解析】(1)由离心率得到,由椭圆的短轴端点与双曲线的焦点重合,得到,进而可求出结果;(2)先由题意,得直线的斜率存在,设直线的方程为,联立直线与椭圆方程,设,根据韦达定理,得到,,再由以为直径的圆过坐标原点,得到,进而可求出结果.详解】(1)由题意知,∴,即,又双曲线的焦点坐标为,椭圆的短轴端点与双曲线的焦点重合,所以,∴,故椭圆的方程为.(2)解:由题意知直线的斜率存在,设直线的方程为由得:由得:设,则,,∴因为以为直径的圆过坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论