版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省汉中市部分高中2025届高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值2.已知圆,圆,M,N分别是圆上的动点,P为x轴上的动点,则以的最小值为()A B.C. D.3.曲线在处的切线如图所示,则()A.0 B.C. D.4.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是6”,丙表示事件“两次取出的球的数字之和是5”,丁表示事件“两次取出的球的数字之和是偶数”,则下列判断正确的是()A.甲与丙是互斥事件 B.乙与丙是对立事件C.甲与丁是对立事件 D.丙与丁是互斥事件5.已知数列的通项公式为,是数列的最小项,则实数的取值范围是()A. B.C. D.6.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.20227.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.8.已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A. B.C. D.9.在空间直角坐标系中,为直线的一个方向向量,为平面的一个法向量,且,则()A. B.C. D.10.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.11.已知平面的一个法向量为,则x轴与平面所成角的大小为()A. B.C. D.12.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.14.点到直线的距离为________.15.不等式的解集是_______________16.若直线与直线相互平行,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设p:;q:关于x的方程无实根.(1)若q为真命题,求实数k的取值范围;(2)若是假命题,且是真命题,求实数k的取值范围.18.(12分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值19.(12分)如图,已知抛物线的焦点为,点是轴上一定点,过的直线交与两点.(1)若过的直线交抛物线于,证明纵坐标之积为定值;(2)若直线分别交抛物线于另一点,连接交轴于点.证明:成等比数列.20.(12分)已知集合,(1)若,求m的取值范围;(2)若“x∈B”是“x∈A”的充分不必要条件,求m的取值范围21.(12分)已知公差不为零的等差数列的前项和为,,且,,成等比数列(1)求的通项公式;(2)记,求数列的前项和22.(10分)已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B2、A【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为3,易知,当三点共线时,取得最小值,的最小值为圆与圆的圆心距减去两个圆的半径和,即:.故选:A.注意:9至12题为多选题3、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.4、D【解析】根据互斥事件和对立事件的定义判断【详解】当第一次取出1,第二次取出4时,甲丙同时发生,不互斥不对立;第二次取出的球的数字是6与两次取出的球的数字之和是5不可能同时发生,但可以同时不发生,不对立,当第一次取出1,第二次取出3时,甲与丁同时发生,不互斥不对立,两次取出的球的数字之和是5与两次取出的球的数字之和是偶数不可以同时发生,但可以同时不发生,因此是互斥不对立故选:D5、D【解析】利用最值的含义转化为不等式恒成立问题解决即可【详解】解:由题意可得,整理得,当时,不等式化简为恒成立,所以,当时,不等式化简为恒成立,所以,综上,,所以实数的取值范围是,故选:D6、A【解析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A7、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D8、B【解析】设平面内的一点为,由可得,进而可得满足的方程,将选项代入检验即可得正确选项.【详解】设平面内的一点为(不与点重合),则,因为是平面的一个法向量,所以,所以,即,对于A:,故选项A不正确;对于B:,故选项B正确;对于C:,故选项C不正确;对于D:,故选项D不正确,故选:B.9、B【解析】由已知条件得出,结合空间向量数量积的坐标运算可求得实数的值.【详解】因为,则,解得.故选:B.10、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.11、C【解析】依题意可得轴的方向向量可以为,再利用空间向量法求出线面角的正弦值,即可得解;【详解】解:依题意轴的方向向量可以为,设x轴与平面所成角为,则,因为,所以,故选:C12、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,2,,,1,,,,设异面直线与所成角为,,异面直线与所成角为.故答案为:.14、【解析】利用点到直线的距离公式即可得出【详解】利用点到直线的距离可得:故答案为:15、或【解析】将分式不等式,转化为一元二次不等式求解【详解】因为,所以,解得或.故答案为:或【点睛】本题主要考查分式不等式的解法,还考查了运算求解的能力,属于基础题.16、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据命题的真假,结合一元二次方程无实根,列出的不等式,即可求得结果;(2)求得命题为真对应的的范围,结合命题一个为真命题一个为假命题,即可列出的不等式组,求解即可.【小问1详解】若q为真命题,则,解得,即实数k的取值范围为.【小问2详解】若p为真,,解得,由是假命题,且是真命题,得:p、q两命题一真一假,当p真q假时,或,得,当p假q真时,,此时无解.综上的取值范围为.18、(1)(2)0【解析】(1)设出圆心坐标,利用题干条件得到方程,求出,从而求出该圆的方程;(2)利用点到直线距离公式及垂径定理进行求解.【小问1详解】设圆心为,,则由题意得:,解得:或(舍去),故该圆的方程为【小问2详解】圆心到直线的距离为,由垂径定理得:,解得:19、(1)证明见解析(2)证明见解析【解析】(1)设直线方程为,联立抛物线方程用韦达定理可得;(2)借助(1)中结论可得各点纵坐标之积,进而得到F、T、Q三点横坐标关系,然后可证.【小问1详解】显然过T的直线斜率不为0,设方程为,联立,消元得到,.【小问2详解】由(1)设,因为AP与BQ均过T(t,0)点,可知,又AB过F点,所以,如图:,,设M(n,0),由(1)类比可得.,且,成等比数列.20、(1)(2)【解析】(1)先求出,由得到,得到不等式组,求出m的取值范围;(2)根据充分不必要条件得到是的真子集,分与两种情况进行求解,求得m的取值范围.【小问1详解】,解得:,故,因为,所以,故,解得:,所以m的取值范围是.【小问2详解】若“x∈B”是“x∈A”的充分不必要条件,则是的真子集,当时,,解得:,当时,需要满足:或,解得:综上:m取值范围是21、(1)(2)【解析】(1)设数列的公差为,由,且,,,利用“”法求解;(2)由,利用裂项相消法求解.【小问1详解】解:,,设数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保姆协议书范本
- 私募基金投资房产合同审查策略
- 豪华酒店设计师聘用合同
- 2024年设施共享补充协议
- 佛山市健身馆租赁合同样本
- 墙绘工程合同范本
- 通信大楼电梯安装工程合同
- 珠宝店防火门安装协议
- 珠宝店翻新施工合同
- 2025合同样例物业管理服务合同2
- 数字工程勘察信息平台构建
- 喷涂设备保养和维护操作规程
- 监控设备改造项目 投标方案(技术方案)
- 【一例小儿支气管肺炎的临床护理个案分析2200字】
- 中国特色社会主义理论与实践复习资料-研究生
- 抖音学习考试题及答案
- “源网荷储”一体化项目(储能+光伏+风电)规划报告
- 北师大附中2024届高一上数学期末联考试题含解析
- 后勤外包服务保密管理制度范文
- 小学国庆节主题活动方案设计(四篇)
- 电梯配件明细表
评论
0/150
提交评论