吉林省榆树市一中2025届高二数学第一学期期末考试试题含解析_第1页
吉林省榆树市一中2025届高二数学第一学期期末考试试题含解析_第2页
吉林省榆树市一中2025届高二数学第一学期期末考试试题含解析_第3页
吉林省榆树市一中2025届高二数学第一学期期末考试试题含解析_第4页
吉林省榆树市一中2025届高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省榆树市一中2025届高二数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的两焦点之间的距离为A. B.C. D.2.圆与圆的位置关系为()A.内切 B.外切C.相交 D.相离3.函数在(0,e]上的最大值为()A.-1 B.1C.0 D.e4.数列,,,,…的一个通项公式为()A. B.C. D.5.已知双曲线的实轴长为10,则该双曲线的渐近线的斜率为()A. B.C. D.6.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为()A. B.C. D.7.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形8.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.9.函数是偶函数且在上单调递减,,则的解集为()A. B.C. D.10.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.11.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数满足,则______.14.已知抛物线C:的焦点F到准线的距离为4,过点F和的直线l与抛物线C交于P,Q两点.若,则________.15.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)16.在1和9之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.求证:(1)平面;(2)平面.18.(12分)已知椭圆的焦点为,且该椭圆过点(1)求椭圆的标准方程;(2)若椭圆上的点满足,求的值19.(12分)已知两点(1)求以线段为直径的圆C的方程;(2)在(1)中,求过M点的圆C的切线方程20.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和21.(12分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值22.(10分)为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O的北偏西45°方向km处设立观测点A,在平台O的正东方向12km处设立观测点B,规定经过O、A、B三点的圆以及其内部区域为安全预警区.如图所示:以O为坐标原点,O的正东方向为x轴正方向,建立平面直角坐标系(1)试写出A,B的坐标,并求两个观测点A,B之间的距离;(2)某日经观测发现,在该平台O正南10kmC处,有一艘轮船正以每小时km的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,由于椭圆的方程为,故可知长半轴的长为,那么可知两个焦点的坐标为,因此可知两焦点之间的距离为,故选C考点:椭圆的简单几何性质点评:解决的关键是将方程变为标准式,然后结合性质得到结论,属于基础题2、B【解析】求出两圆的圆心距与半径之和、半径之差比较大小即可得出正确答案.【详解】由可得圆心为,半径,由可得圆心为,半径,所以圆心距为,所以两圆相外切,故选:B.3、A【解析】对函数求导,然后求出函数的单调区间,从而可求出函数的最大值【详解】由,得,当时,,当,,所以在上单调递增,在上单调递减,所以当时,取得最大值,故选:A4、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B5、B【解析】利用双曲线的实轴长为,求出,即可求出该双曲线的渐近线的斜率.【详解】由题意,,所以,,所以双曲线的渐近线的斜率为.故选:B.【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.6、A【解析】根据双曲线渐近线方程得a和b的关系,根据焦点在抛物线准线上得c的值,结合a、b、c关系即可求解.【详解】∵双曲线的一条渐近线方程是,∴,∵准线方程是,∴,∵,∴,,∴双曲线标准方程为:.故选:A.7、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.8、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B9、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.10、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.11、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B12、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】考点:函数导数与求值14、9【解析】根据抛物线C:的焦点F到准线的距离为4,求得抛物线方程.再由和,得到点P的坐标,进而得到直线l的方程,与抛物线方程联立求得的坐标,再由两点间距离公式求解.【详解】由抛物线C:的焦点F到准线的距离为4,所以,所以抛物线方程为.因为,,所以点P的纵坐标为1,代入抛物线方程,可得点P的横坐标为,不妨设,则,故直线l的方程为,将其代入得.可得,故.故答案为:9【点睛】本题主要考查抛物线的方程与性质,还考查了运算求解的能力,属于中档题.15、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答16、27【解析】设公比为,利用已知条件求出,然后根据通项公式可求得答案【详解】设公比为,插入的三个数分别为,因为,所以,得,所以,故答案为:27三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)连结、,交于点,连结,通过即可证明;(2)通过,

可证平面,即得,进而通过平面得,结合即证.详解】证明:(1)连结、,交于点,连结,底面正方形,∴是中点,点是的中点,.平面,

平面,∴平面.(2),点是的中点,.底面是正方形,侧棱底面,∴,

,且

,∴平面,∴,又,∴平面,∴,,,平面.【点睛】本题考查线面平行和线面垂直的证明,属于基础题.18、(1)(2)【解析】(1)利用两点间距离公式求得P到椭圆的左右焦点的距离,然后根据椭圆的定义得到a的值,结合c的值,利用a,b,c的平方关系求得的值,再结合焦点位置,写出椭圆的标准方程(2)利用向量的数量积,求得点满足的条件,再结合椭圆的方程,解得的值【小问1详解】解:设椭圆的长半轴长为a,短半轴长为b,半焦距为c,因为所以,即,又因为c=2,所以,又因为椭圆的中心在原点,焦点在x轴上,所以该椭圆的标准方程为.【小问2详解】解:因为,所以,即,又,所以,即.19、(1);(2).【解析】(1)求出圆心和半径即可得到答案;(2)根据题意先求出切线的斜率,进而通过点斜式求出切线方程.【小问1详解】由题意,圆心,半径,则圆C的方程为:.【小问2详解】由题意,,则切线斜率为-1,所以切线方程为:.20、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和21、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式求得到直线的距离,设,,直线方程代入抛物线方程,判别式大于0保证相交,由韦达定理得,由弦长公式得弦长,再计算出三角形的面积后可解得【小问1详解】选条件①:由准线方程为知,所以抛物线C的方程为选条件②:因为抛物线的焦点坐标为所以由已知得椭圆的一个焦点为.所以,又,所以,所以抛物线C的方程为选条件③:由题意可知得,当F,A,B三点共线时,,由两点间距离公式,解得,所以抛物线C的方程为.【小问2详解】把代入方程,可得,设,,联立,消去y可得,由,解得,又知,,所以,由到直线的距离为,所以,即,解得或经检验均满足,所以m的值为或.22、(1);(2)会驶入安全预警区,行驶时长为半小时【解析】(1)先求出A,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论