版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省宾县一中2025届高二数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.2.已知直线与平行,则的值为()A. B.C. D.3.如图,在空间四边形OABC中,,,,点N为BC的中点,点M在线段OA上,且OM=2MA,则()A. B.C. D.4.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.5.设双曲线:的左焦点和右焦点分别是,,点是右支上的一点,则的最小值为()A.5 B.6C.7 D.86.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.27.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的运用,最具代表性的便是园林中的门洞.如图,某园林中的圆弧形挪动高为2.5m,底面宽为1m,则该门洞的半径为()A.1.2m B.1.3mC.1.4m D.1.5m8.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.29.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.10.下列各式正确的是()A. B.C. D.11.如图,在三棱锥中,平面ABC,,,,则点A到平面PBC的距离为()A.1 B.C. D.12.圆的圆心和半径分别是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知一个样本数据为3,3,5,5,5,7,7,现在新加入一个3,一个5,一个7得到一个新样本,则与原样本数据相比,新样本数据平均数______,方差______.(“变大”、“变小”、“不变”)14.已知数列满足,,的前项和为,则______.15.命题“矩形的对角线相等”的否命题是________.16.如图,SD是球O的直径,A、B、C是球O表面上的三个不同的点,,当三棱锥的底面是边长为3的正三角形时,则球O的半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆的位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分18.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围19.(12分)已知抛物线经过点.(Ⅰ)求抛物线C的方程及其焦点坐标;(Ⅱ)过抛物线C上一动点P作圆的两条切线,切点分别为A,B,求四边形面积的最小值.20.(12分)在正方体中,,,分别是,,的中点.(1)证明:平面平面;(2)求直线与所成角的正切值.21.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)22.(10分)已知(1)讨论函数的单调性;(2)若函数在上有1个零点,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.2、C【解析】由两直线平行可得,即可求出答案.【详解】直线与平行故选:C.3、D【解析】利用空间向量的线性运算即可求解.【详解】解:∵N为BC的中点,点M在线段OA上,且OM=2MA,且,,,故选:D.4、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.5、C【解析】根据双曲线的方程求出的值,由双曲线的定义可得,由双曲线的性质可知,利用函数的单调性即可求得最小值.【详解】由双曲线:可得,,所以,所以,,由双曲线的定义可得,所以,所以,由双曲线的性质可知:,令,则,所以上单调递增,所以当时,取得最小值,此时点为双曲线的右顶点,即的最小值为,故选:C.6、D【解析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D7、B【解析】设半径为R,根据垂径定理可以列方程求解即可.【详解】设半径为R,,解得,化简得.故选:B.8、B【解析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【详解】,,即联立直线和抛物线方程得设,则解得故选:B9、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.10、C【解析】利用导数的四则运算即可求解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误;故选:C11、A【解析】设点A到平面PBC的距离为,根据等体积法求解即可.【详解】因为平面ABC,所以,因为,,所以又,,所以,所以,设点A到平面PBC的距离为,则,即,,故选:A12、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.不变②.变大【解析】通过计算平均数和方差来确定正确答案.【详解】原样本平均数为,原样本方差为,新样本平均数为,新样本方差为.所以平均数不变,方差变大.故答案为:不变;变大14、【解析】分析出当为正奇数时,,可求得的值,再分析出当为正偶数时,,可求得的值,进而可求得的值.【详解】由题知,当为正奇数时,,于是,,,,,所以.又因为当为正偶数时,,且,所以两式相加可得,于是,两式相减得.所以,故.故答案为:.【点睛】关键点点睛:本题的解题关键在于分析出当为正奇数时,,以及当为正偶数时,,找出规律,结合并项求和法求出以及的值.15、“若一个四边形不是矩形,则它的对角线不相等”【解析】否命题是条件否定,结论否定,即可得解.【详解】否命题是条件否定,结论否定,所以命题“矩形的对角线相等”的否命题是“若一个四边形不是矩形,则它的对角线不相等”故答案为:“若一个四边形不是矩形,则它的对角线不相等”16、【解析】由三棱锥是正三棱锥,利用正弦定理得出三角形外接圆的半径,进而求出,再由余弦定理得出球O的半径.【详解】因为,所以平面,三棱锥是正三棱锥,设为三角形外接圆的圆心,则在上,连接,,由得出,所以,在中,,即,解得,则球O的半径为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C的圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为18、(1)(2)【解析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程为:【小问2详解】圆心到直线的距离且直线与圆有公共点即19、(1),;(2).【解析】(1)将点代入抛物线方程求解出的值,则抛物线方程和焦点坐标可知;(2)设出点坐标,根据切线长相等以及切线垂直于半径将四边形的面积表示为,然后根据三角形面积公式将其表示为,根据点到点的距离公式表示出,然后结合二次函数的性质求解出四边形面积的最小值.【详解】(1)因为抛物线过点,所以,所以,所以抛物线的方程为:,焦点坐标为,即;(2)设,因为为圆的切线,所以,且,所以,又因为,所以,当时,四边形的面积有最小值且最小值为.【点睛】关键点点睛:解答本题的关键在于根据圆的切线的性质将四边形面积转化为三角形的面积,再通过三角形的面积公式将其转化为二次函数求最值的问题模型,对于转化的技巧要求较高.20、(1)证明见解析(2)【解析】(1)分别证明∥平面,∥平面,最后利用面面平行的判定定理证明平面∥平面即可;(2)由∥得即为直线与所成角,在直角△即可求解.【小问1详解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小问2详解】由(1)得∥,∴为直线MN与所成的角,设正方体的棱长为a,在△中,,,∴.21、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的尾数是0,而的尾数为0或5,这与为最简分数,的最大公约数是1,相矛盾,所以假设不正确,是无理数.22、(1)答案见解析;(2).【解析】(1)对函数求导,按a值的正负分析讨论导数值的符号计算作答.(2)求出函数的解析式并求导,再按在值的正负分段讨论推理作答.【小问1详解】函数的定义域为R,求导得:当时,当时,,当时,,则在上单调递减,在上单调递增,当时,令,得,若,即时,,则有在R上单调递增,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,所以,当时,上单调递减,在上单调递增,当时,在,上都单调递增,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校工作考核细则范本(三篇)
- 2024年学校后勤学期工作计划范文(二篇)
- 2024年发包工程和临时工安全管理制度范本(三篇)
- 2024年学校周周清制度(二篇)
- 2024年小学减负工作计划例文(四篇)
- GSMA:2024年移动互联网连接报告 The State of Mobile Internet Connectivity 2024
- 2024年家具采购合同参考样本(四篇)
- 2024年商业租房合同范本(二篇)
- 2024年安全生产工作总结参考样本(三篇)
- 2024年四年级数学教学工作计划样本(四篇)
- 期中测试(二)-2024-2025学年语文六年级上册统编版
- 期中 (试题) -2024-2025学年译林版(三起)英语四年级上册
- 2024注册安全工程师安全生产管理-考前押题卷
- KENWOOD对讲机说明书
- 火灾自动报警系统操作流程图普通主机
- 运动员技术等级称号申请表
- 6米满堂脚手架搭设方案
- 南开《数据科学导论》20春期末考核答案
- 小学四年级中华优秀传统文化教案小学四年级山东友谊出版社
- 英语主格宾格所有格一览表
- 《龟兔赛跑》PPT课件.ppt
评论
0/150
提交评论