![重庆市主城区七校联考2025届高二上数学期末监测试题含解析_第1页](http://file4.renrendoc.com/view12/M08/2F/30/wKhkGWcfwxqALj8BAAHV1b0fPLQ568.jpg)
![重庆市主城区七校联考2025届高二上数学期末监测试题含解析_第2页](http://file4.renrendoc.com/view12/M08/2F/30/wKhkGWcfwxqALj8BAAHV1b0fPLQ5682.jpg)
![重庆市主城区七校联考2025届高二上数学期末监测试题含解析_第3页](http://file4.renrendoc.com/view12/M08/2F/30/wKhkGWcfwxqALj8BAAHV1b0fPLQ5683.jpg)
![重庆市主城区七校联考2025届高二上数学期末监测试题含解析_第4页](http://file4.renrendoc.com/view12/M08/2F/30/wKhkGWcfwxqALj8BAAHV1b0fPLQ5684.jpg)
![重庆市主城区七校联考2025届高二上数学期末监测试题含解析_第5页](http://file4.renrendoc.com/view12/M08/2F/30/wKhkGWcfwxqALj8BAAHV1b0fPLQ5685.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市主城区七校联考2025届高二上数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读如图所示程序框图,运行相应的程序,输出的S的值等于()A.2 B.6C.14 D.302.有一机器人的运动方程为,(是时间,是位移),则该机器人在时刻时的瞬时速度为()A. B.C. D.3.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)4.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°5.丹麦数学家琴生(Jensen)是19世纪对数学分析作出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在区间内的导函数为,在区间内的导函数为,在区间内恒成立,则称函数在区间内为“凸函数”,则下列函数在其定义域内是“凸函数”的是()A. B.C. D.6.不等式解集为()A. B.C. D.7.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面8.设等差数列,前n项和分别是,若,则()A.1 B.C. D.9.宋元时期数学名著《算学启蒙》中有关于“松竹并生"的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,分别为3,1,则输出的等于A.5 B.4C.3 D.210.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或11.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.12.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.98二、填空题:本题共4小题,每小题5分,共20分。13.已知,是椭圆:的两个焦点,点在上,则的最大值为________14.如图,一个小球从10m高处自由落下,每次着地后又弹回到原来高度的,若已知小球经过的路程为,则小球落地的次数为______15.已知直线与圆交于,两点,则的最小值为___________.16.已知函数,是其导函数,若曲线的一条切线为直线:,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点F为抛物线:()的焦点,点在抛物线上且在x轴上方,.(1)求抛物线的方程;(2)已知直线与曲线交于A,B两点(点A,B与点P不重合),直线PA与x轴、y轴分别交于C、D两点,直线PB与x轴、y轴分别交于M、N两点,当四边形CDMN的面积最小时,求直线l的方程.18.(12分)已知抛物线:的焦点到顶点的距离为.(1)求抛物线的方程;(2)已知过点的直线交抛物线于不同的两点,,为坐标原点,设直线,的斜率分别为,,求的值.19.(12分)如图,直角梯形AEFB与菱形ABCD所在平面互相垂直,,,,,,M为AD中点.(1)证明:直线面DEF;(2)求二面角的余弦值.20.(12分)已知数列的前项和分别是,满足,,且.(1)求数列的通项公式;(2)若数列对任意都有恒成立,求.21.(12分)已知,是椭圆:的左、右焦点,离心率为,点A在椭圆C上,且的周长为.(1)求椭圆C的方程;(2)若B为椭圆C上顶点,过的直线与椭圆C交于两个不同点P、Q,直线BP与x轴交于点M,直线BQ与x轴交于点N,判断是否为定值.若是,求出定值,若不是,请说明理由.22.(10分)已知数列的前n项和为,且,,数列满足,.(1)求和的通项公式;(2)求数列{}的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】模拟运行程序,直到得出输出的S的值.【详解】运行程序框图,,,;,,;,,;,输出.故选:C2、B【解析】对运动方程求导,根据导数意义即速度求得在时的导数值即可.【详解】由题知,,当时,,即速度为7.故选:B3、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.4、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D5、B【解析】根据基本初等函数的导函数公式求各函数二阶导函数,判断其在定义域上是否恒有,即可知正确选项.【详解】A:,则,显然定义域内有正有负,故不是“凸函数”;B:,则,故是“凸函数”;C:,则,故不是“凸函数”;D:,则,显然定义域内有正有负,故不是“凸函数”;故选:B6、C【解析】化简一元二次不等式的标准形式并求出解集即可.【详解】不等式整理得,解得或,则不等式解集为.故选:.7、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D8、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B9、B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】解:当n=1时,a=3,b=2,满足进行循环的条件,当n=2时,a,b=4,满足进行循环的条件,当n=3时,a,b=8,满足进行循环的条件,当n=4时,a,b=16,不满足进行循环的条件,故输出的n值为4,故选:B【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答10、D【解析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D11、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.12、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】根据椭圆的定义可得,结合基本不等式即可求得的最大值.【详解】∵在椭圆上∴∴根据基本不等式可得,即,当且仅当时取等号.故答案为:9.14、4【解析】设小球从第(n-1)次落地到第n次落地时经过的路程为m,则由已知可得数列是从第2项开始以首项为,公比为的等比数列,根据等比数列的通项公式求得,再设设小球第n次落地时,经过的路程为,由等比数列的求和公式建立方程求解即可.【详解】解:设小球从第(n-1)次落地到第n次落地时经过的路程为m,则当时,得出递推关系,所以数列是从第2项开始以首项为,公比为的等比数列,所以,且,设小球第n次落地时,经过的路程为,所以,所以,解得,故答案为:4.15、【解析】先求出直线经过的定点,再求出圆心到定点的距离,数形结合即得解.【详解】由题得,所以直线经过定点,圆的圆心为,半径为.圆心到定点的距离为,当时,取得最小值,且最小值为.故答案为:816、【解析】设直线与曲线相切的切点为,借助导数的几何意义用表示出m,n即可作答.【详解】设直线与曲线相切的切点为,而,则直线的斜率,于是得,即,由得,而,于是得,即因,则,,当且仅当时取“=”,所以的最小值为.故答案为:【点睛】结论点睛:函数y=f(x)是区间D上的可导函数,则曲线y=f(x)在点处的切线方程为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据给定条件结合抛物线定义求出p即可作答.(2)联立直线l与抛物线的方程,用点A,B坐标表示出点C,D,M,N的坐标,列出四边形CDMN面积的函数关系,借助均值不等式计算得解.【小问1详解】抛物线的准线:,由抛物线定义得,解得,所以抛物线的方程为.【小问2详解】因为点在上,且,则,即,依题意,,设,,由消去并整理得,则有,,直线PA的斜率是,方程为,令,则,令,则,即点C,点D,同理点M,点N,则,,四边形的面积有:,当且仅当,即时取“=”,所以当时四边形CDMN的面积最小值为4,直线l的方程为或.18、(1)(2)【解析】(1)由抛物线的几何性质有焦点到顶点的距离为,从而即可求解;(2)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设的方程为,,,联立抛物线的方程,由韦达定理及两点间的斜率公式即可求解.【小问1详解】解:依题意,,解得,∴抛物线的方程为;【小问2详解】解:当直线的斜率不存在时,直线与抛物线仅有一个交点,不符合题意;当直线的斜率存在时,设的方程为,,,由消去可得,∵直线交抛物线于不同的两点,∴,由韦达定理得,∴.19、(1)证明见解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,连接BD,可得,以为原点,为轴,竖直向上为轴建立空间直角坐标系,利用向量法计算与平面的法向量的数量积为0即可得证;(2)分别计算出平面和平面的法向量,然后利用向量夹角公式即可求解.【小问1详解】证明:因为平面平面ABCD,平面平面ABCD,且,所以平面ABCD,连接BD,则等边三角形,所以,以为原点,为轴,竖直向上为轴建立如图所示的空间直角坐标系,则,设为平面的法向量,因为,则有,取,又因为,所以,因为平面,所以平面;【小问2详解】解:分别设为平面和平面的法向量,因为,则有,取,因,则有,取,所以,由图可知二面角为锐二面角,所以二面角的余弦值为.20、(1),(2)【解析】(1)根据已知递推关系式再写一式,然后两式相减,由等差数列、等比数列的定义即可求解;(2)根据已知递推关系式再写一式,然后两式相减,求出,最后利用错位相减法即可得答案.【小问1详解】解:因为,,所以,,得,所以是以2为首项2为公差的等差数列,是以1为首项2为公差的等差数列,所以,,所以;因为,所以,又由得,所以是以2为首项2为公比的等比数列,所以.【小问2详解】解:当时,,当时,,得,即,记,则,,则.21、(1)(2)【解析】(1)利用椭圆的定义可得,而离心率,解方程组,即可得解;(2)设直线的方程为,将其与椭圆的方程联立,由,,三点的坐标写出直线,的方程,进而知点,的坐标,再结合韦达定理,进行化简,即可得解【小问1详解】解:因为的周长为,所以,即,又离心率,所以,,所以,故椭圆的方程为【小问2详解】解:由题意知,直线的斜率一定不可能为0,设其方程为,,,,,联立,得,所以,,因为点为,所以直线的方程为,所以点,,直线的方程为,所以点,,所以,即为定值22、(1);;(2)【解析】(1)求数列的通项公式主要利用求解,分情况求解后要验证是否满足的通项公式,将求得的代入整理即可得到的通项公式;(2)整理数列的通项公式得,依据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版湘教版秋八年级数学上册第三章实数课题无理数用计算器求平方根听评课记录
- 新人教版七年级数学上册1.2.4《 绝对值》(第2课时)听评课记录1
- 七年级历史下册第三单元明清时期:统一多民族国家的巩固与发展20清朝君主专制的强化听课评课记录(新人教版)
- 苏科版数学八年级上册1.3《探索三角形全等的条件》听评课记录6
- 八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法 第3课时 多项式乘以多项式听评课记录 新人教版
- 湘教版数学七年级下册4.4《平行线的判定方法1》听评课记录
- 五年级上册数学听评课记录《1.1 精打细算》(2)-北师大版
- 湘教版数学九年级上册《小结练习》听评课记录6
- 人民版道德与法治九年级下册第一课第1课时《“地球村”形成了》听课评课记录
- 人教部编版历史八年级下册:第19课《社会生活的变迁》听课评课记录4
- 电信网和互联网图像篡改检测技术要求与测试方法
- 2025届江苏省南京市盐城市高三一模考试语文试题 课件
- 《水稻生长进程》课件
- 2024版企业高管职务任命书3篇
- 青少年铸牢中华民族共同体意识路径研究
- 广西出版传媒集团有限公司招聘笔试冲刺题2025
- 江苏省南京市2024年中考英语试题(含解析)
- 外科围手术期处理(外科学课件)
- 学校农业教育体验项目方案
- 脑卒中护理课件
- 水利工程施工监理规范(SL288-2014)用表填表说明及示例
评论
0/150
提交评论