版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省武威市第四中学2025届数学高一上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b2.若指数函数,则有()A.或 B.C. D.且3.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.564.()A. B.1C.0 D.﹣15.若集合,则()A.或 B.或C.或 D.或6.对于空间中的直线,以及平面,,下列说法正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则7.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)8.已知函数,则()A.2 B.5C.7 D.99.已知函数表示为设,的值域为,则()A., B.,C., D.,10.已知,则下列选项中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则______12.函数的值域是__________13.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______14.已知奇函数f(x),当x>0,fx=x215.已知函数f(x)=sin(ωx+)(其中ω>0),若x=为函数f(x)的一个零点,且函数f(x)在(,)上是单调函数,则ω的最大值为______16.函数是定义在上的奇函数,当时,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数且点(4,2)在函数f(x)的图象上.(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;(2)求不等式f(x)<1的解集;(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围18.已知函数(为常数且)的图象经过点,(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.19.某企业为抓住环境治理带来的历史性机遇,决定开发生产一款大型净水设备.生产这款设备的年固定成本为万元,每生产台需要另投入成本(万元),当年产量不足台时,万元,当年产量不少于台时,万元.若每台设备的售价为万元,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润(万元)关于年产量(台)的函数关系式;(2)年产量为多少台时,该企业在这一款净水设备的生产中获利最大?最大利润是多少万元?20.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx21.已知圆:,(1)若过定点的直线与圆相切,求直线的方程;(2)若过定点且倾斜角为30°的直线与圆相交于,两点,求线段的中点的坐标;(3)问是否存在斜率为1的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D2、C【解析】根据指数函数的概念,由所给解析式,可直接求解.【详解】因为是指数函数,所以,解得.故选:C3、C【解析】根据新定义,直接计算取近似值即可.【详解】由题意,故选:C4、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可.【详解】.故选:C.5、B【解析】根据补集的定义,即可求得的补集.【详解】∵,∴或,故选:B【点睛】本小题主要考查补集的概念和运算,属于基础题.6、D【解析】根据空间直线和平面的位置关系对四个选项逐一排除,由此确定正确的选项【详解】对于A选项,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,的夹角不一定为90°,故C错误;因为,故,因为,故,故D正确,故选D.【点睛】本小题主要考查空间两条直线的位置关系,考查直线和平面、平面和平面位置关系的判断,属于基础题.7、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.8、D【解析】先求出,再求即可,【详解】由题意得,所以,故选:D9、A【解析】根据所给函数可得答案.【详解】根据题意得,的值域为.故选:A.10、A【解析】计算的取值范围,比较范围即可.【详解】∴,,.∴.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由分段函数解析式先求,再求.【详解】由已知可得,故.故答案为:2.12、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.13、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.14、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-1015、【解析】由题意,为函数的一个零点,可得,且函数在,上是单调函数可得,即可求的最大值【详解】解:由题意,为函数的一个零点,可得,则.函数在,上是单调函数,可得,即.当时,可得的最大值为3故答案为3.【点睛】本题考查了正弦型三角函数的图象及性质的应用,属于中档题.16、11【解析】根据奇函数性质求出函数的解析式,然后逐层代入即可.【详解】,,当时,,即,,,故答案为:11.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3).【解析】(1)根据点在函数的图象上得到,于是可得解析式,进而可画出函数的图象;(2)将不等式化成不等式组求解可得所求;(3)结合图象得到的取值范围后再求出的范围【详解】(1)∵点在函数图象上,∴,∴∴.画出函数的图象如下图所示(2)不等式等价于或解得,或,所以原不等式的解集为(3)∵方程f(x)-2m=0有两个不相等的实数根,∴函数的图象与函数的图象有两个不同的交点结合图象可得,解得∴实数的取值范围为【点睛】(1)本题考查函数图象的画法和图象的应用,根据解析式画图象时要根据描点法进行求解,画图时要熟练运用常见函数的图象(2)根据方程根的个数(函数零点的个数)求参数的取值时,要注意将问题进行转化两函数图象交点个数的问题,然后画出函数的图象后利用数形结合求解18、(1);(2).【解析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得的值.(2)将原不等式分离常数,利用函数的单调性,求出的取值范围.【详解】(1)由于函数图像经过,,所以,解得,所以.(2)原不等式为,即在时恒成立,而在时单调递减,故在时有最小值为,故.所以实数的取值范围是.【点睛】本小题主要考查待定系数法求函数的解析式,考查不等式恒成立问题的求解策略,考查函数的单调性以及最值,属于中档题.19、(1);(2)当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元【解析】(1)分别在和两种情况下,由可得函数关系式;(2)利用二次函数性质、基本不等式可分别求得和时的最大值,比较即可得到结果.【小问1详解】当,时,;当,时,;综上所述:.【小问2详解】当,时,,则当时,的最大值为;当,时,(当且仅当,即时等号成立);当年产量为台时,该企业在这款净水设备的生产中获利润最大,最大为万元20、(1)fx=9004x+5【解析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×10+5,解得k(2)因为fx=9004x+5答:宿舍应建在离工厂254km处,可使总费用最小,f【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方21、(1)或(2)(3)存在,或【解析】(1)首先设直线的方程为:,与圆的方程联立,令,即可求解的值;(2)设直线的方程为:,与圆的方程联立,利用韦达定理表示中点坐标;(3)方法一,设直线:,与圆的方程联立,利用韦达定理表示,即可求解;方法二,设圆系方程,利用圆心在直线,以及圆经过原点,即可求解参数.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 接骨续筋片联合康复训练对骨折患者功能恢复的影响
- 《我国企业并购的财务风险管理研究》
- 2024年度货物买卖合同(英文版)
- 《乌司他丁对水下爆炸致兔急性肺损伤的治疗作用》
- 2024版道路监控系统设计与施工合同
- 2024年度北京学校教学楼装修施工合同
- 《淮南市普通高中篮球特长生培养路径的调查研究》
- 益阳市市直医疗卫生单位人才引进笔试真题2023
- 2024年度光伏发电设备供应与安装合同
- 2024版工程质量保修与施工安全协议
- 中国历史人文地理(上)学习通超星期末考试答案章节答案2024年
- 期中测试卷-2024-2025学年统编版语文五年级上册
- 《算法设计与分析基础》(Python语言描述) 课件 第9章NP完全问题
- 2024三新供电服务限公司第二批供电服务职工招聘261人高频难、易错点500题模拟试题附带答案详解
- 纪委履行监督职责情况报告3篇-各级纪委要履行好监督专责
- 场车使用单位安全总监题库
- 2024年全国网络安全行业职业技能大赛(网络安全管理员)考试题库-上(单选题)
- 2024-2030年中国新能源行业市场深度调研及竞争格局与投资发展潜力研究报告
- 广藿香与化疗药物的联合抗癌效果
- 7.2维护祖国统一 (课件) 2024-2025学年九年级道德与法治上册 (统编版)
- 2024年中国民航科学技术研究院社会招聘工作人员16人历年高频500题难、易错点模拟试题附带答案详解
评论
0/150
提交评论