版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
主题三函数专题09平面直角坐标系与函数基础目录一览知识目标(新课程标准提炼)中考解密(分析考察方向,精准把握重难点)重点考向(以真题为例,探究中考命题方向)►考向一不等式的性质►考向二不等式的解集►考向三在数轴上表示不等式的解集►考向四解一元一次不等式►考向五一元一次不等式的整数解►考向六一元一次不等式的应用►考向七解一元一次不等式组►考向八一元一次不等式组的整数解►考向九一元一次不等式组的应用最新真题荟萃(精选最新典型真题,强化知识运用,优化解题技巧)1.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置,由点的位置写出它的坐标;2.在实际问题中,能建立适当的直角坐标系,描述物体的位置;3.探索简单实例中的数量关系和变化规律,了解常量、变量的意义;4.结合实例,了解函数的概念和三种表示法,能举出函数的实例;5.能结合图象对简单实际问题中的函数关系进行分析;6.能确定简单实际问题中函数自变量的取值范围,并会求出函数值;7.能用适当的函数表示法刻画简单实际问题中变量之间的关系;8.结合对函数关系的分析,能对变量的变化情况进行初步讨论.该版块内容是初中代数最重要的部分,是代数的基础,是非常基础也是非常重要的,年年都会考查,分值为8分左右,预计2024年各地中考还将出现,在选填题中出现的可能性较大.►考向一点的坐标解题技巧/易错易混/特别提醒1.有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.2.确定点在坐标平面内的位置,关键是根据不同象限中点的坐标特征去判断,根据题中的已知条件,判断横坐标、纵坐标是大于0,等于0,还是小于0,就可以确定点在坐标平面内的位置.1.(2023•丽水)在平面直角坐标系中,点P(﹣1,m2+1)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(2023•大庆)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)3.(2023•衢州)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为(0,1),点B的坐标为(2,2),则点C的坐标为.►考向二规律型:点的坐标4.(2023•日照)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1+2+3+4+⋯+100时,用到了一种方法,将首尾两个数相加,进而得到1+2+3+4+⋯+100=.人们借助于这样的方法,得到1+2+3+4+⋯+n=(n是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai(xi,yi),其中i=1,2,3,⋯,n,⋯,且xi,yi是整数.记an=xn+yn,如A1(0,0),即a1=0,A2(1,0),即a2=1,A3(1,﹣1),即a3=0,⋯,以此类推.则下列结论正确的是()A.a2023=40 B.a2024=43 C.=2n﹣6 D.=2n﹣45.(2023•泰安)已知,△OA1A2,△A3A4A5,△A6A7A8,…都是边长为2的等边三角形,按如图所示摆放.点A2,A3,A5,…都在x轴正半轴上,且A2A3=A5A6=A8A9=…=1,则点A2023的坐标是.►考向三坐标与图形性质解题技巧/易错易混/特别提醒1.象限角平分线上的点的坐标特征:(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到坐标原点的距离为.3.一般地,点P与点P1关于x轴对称,则横坐标相同,纵坐标互为相反数;点P与点P2关于y轴对称,则纵坐标相同,横坐标互为相反数,点P与点P3关于原点对称,则横、纵坐标分别互为相反数,简单记为“关于谁谁不变,关于原点都改变”.6.(2023•鄂州)如图,在平面直角坐标系中,O为原点,OA=OB=3,点C为平面内一动点,BC=,连接AC,点M是线段AC上的一点,且满足CM:MA=1:2.当线段OM取最大值时,点M的坐标是()A.(,) B.(,) C.(,) D.(,)7.(2023•台湾)如图,坐标平面上直线L的方程式为x=﹣5,直线M的方程式为y=﹣3,P点的坐标为(a,b).根据图中P点位置判断,下列关系何者正确()A.a<﹣5,b>﹣3 B.a<﹣5,b<﹣3 C.a>﹣5,b>﹣3 D.a>﹣5,b<﹣3►考向四函数关系式8.(2022•益阳)已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是()x…﹣1012…y…﹣2024…9.(2022•大连)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是()A.y=0.1x B.y=﹣0.1x+30 C.y= D.y=﹣0.1x2+30x10.(2020•台湾)如图为有春蛋糕店的价目表,阿凯原本拿了4个蛋糕去结账,结账时发现该点正在举办优惠活动,优惠方式为每买5个蛋糕,其中1个价格最低的蛋糕免费,因此阿凯后来多买了1个黑樱桃蛋糕.若阿凯原本的结账金额为x元,后来的结账金额为y元,则x与y的关系式不可能为下列何者?()A.y=x B.y=x+5 C.y=x+10 D.y=x+15►考向五函数自变量的取值范围11.(2023•牡丹江)函数y=中,自变量x的取值范围是()A.x≤1 B.x≥﹣1 C.x<﹣1 D.x>112.(2023•西藏)函数中自变量x的取值范围是.13.(2023•广安)函数y=的自变量x的取值范围是.►考向六函数的图象14.(2023•自贡)如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y与时间x之间的关系如图2所示.下列结论错误的是()A.小亮从家到羽毛球馆用了7分钟 B.小亮从羽毛球馆到报亭平均每分钟走75米 C.报亭到小亮家的距离是400米 D.小亮打羽毛球的时间是37分钟15.(2023•绍兴)已知点M(﹣4,a﹣2),N(﹣2,a),P(2,a)在同一个函数图象上,则这个函数图象可能是()A. B. C. D.16.(2023•盐城)如图,关于x的函数y的图象与x轴有且仅有三个交点,分别是(﹣3,0),(﹣1,0),(3,0),对此,小华认为:①当y>0时,﹣3<x<﹣1;②当x>﹣3时,y有最小值;③点P(m,﹣m﹣1)在函数y的图象上,符合要求的点P只有1个;④将函数y的图象向右平移1个或3个单位长度经过原点.其中正确的结论有()A.4个 B.3个 C.2个 D.1个►考向七动点问题的函数图象解题技巧/易错易混/特别提醒1.动点问题多数情况下会与分类讨论的数学思想及方程、函数思想结合起来进行.2.把动点产生的线段长用时间变量t表示出来以后,动点问题就“静态化”处理了.17.(2023•齐齐哈尔)如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是()A. B. C. D.18.(2023•遂宁)如图,在△ABC中,AB=10,BC=6,AC=8,点P为线段AB上的动点.以每秒1个单位长度的速度从点A向点B移动,到达点B时停止.过点P作PM⊥AC于点M.作PN⊥BC于点N,连结MN,线段MN的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为()A.(5,5) B.(6,) C.(,) D.(,5)19.(2023•河北)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是()A. B. C. D.►考向八函数的表示方法20.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…21.(2022•阿坝州)在某火车站托运物品时,不超过1kg的物品需付款2元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元.则托运xkg(x为大于1的整数)物品的费用为0.5x+1.5元.22.(2021•永州)已知函数y=,若y=2,则x=.1.(2023•台州)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为()A.(3,1) B.(1,3) C.(4,1) D.(3,2)2.(2023•黄石)函数的自变量x的取值范围是()A.x≥0 B.x≠1 C.x≥0且x≠1 D.x>13.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是()A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1 C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣14.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米 B.4800米 C.5200米 D.5400米5.(2023•滨州)由化学知识可知,用pH表示溶液酸碱性的强弱程度,当pH>7时溶液呈碱性,当pH<7时溶液呈酸性,若将给定的NaOH溶液加水稀释,那么在下列图象中,能大致反映NaOH溶液的pH与所加水的体积V之间对应关系的是()A. B. C. D.6.(2023•南通)如图1,△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A﹣C﹣B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图2所示,则a﹣b的值为()A.54 B.52 C.50 D.487.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B. C. D.8.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A. B. C. D.9.(2023•绥化)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A. B. C. D.10.(2023•东营)如图,一束光线从点A(﹣2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m﹣n的值是.11.(2023•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点A1,以OA1为边作正方形A1B1C1O,点C1在y轴上,延长C1B1交直线l于点A2,以C1A2为边作正方形A2B2C2C1,点C2在y轴上,以同样的方式依次作正方形A3B3C3C2,⋯,正方形A2023B2023C2023C2022,则点B2023的横坐标是.12.(2023•齐齐哈尔)如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,OA=OB=4,连接AB,过点O作OA1⊥AB于点A1,过点A1作A1B1⊥x轴于点B1;过点B1作B1A2⊥AB于点A2,过点A2作A2B2⊥x轴于点B2;过点B2作B2A3⊥AB于点A3,过点A3作A3B3⊥x轴于点B3;…;按照如此规律操作下去,则点A2023的坐标为.13.(2023•贵州)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是(﹣2,7),则龙洞堡机场的坐标是.时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D的坐标可以表示为.15.(2023•黑龙江)在函数y=中,自变量x的取值范围是.16.(2023•哈尔滨)在函数中,自变量x的取值范围是.17.(2023•临沂)小明利用学习函数获得的经验研究函数y=x2+的性质,得到如下结论:①当x<﹣1时,x越小,函数值越小;②当﹣1<x<0时,x越大,函数值越小;③当0<x<1时,x越小,函数值越大;④当x>1时,x越大,函数值越大.其中正确的是(只填写序号).18.(2022•上海)已知f(x)=3x,则f(1)=.19.(2023•永州)小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量筒中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表的一组数据:时间t(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酿酒企业酿酒师聘用合同
- 2025知识产权合同范本计算机软件许可协议
- 校园安全监控系统施工协议
- 长春二手房买卖防水验收合同
- 火车站个体出租车租赁合同
- 科技企业产品研发激励方案
- 长沙市二手房赠送油漆合同
- 2024年度矿业设备买卖与安全生产监督合同样本3篇
- 劳动力调度沟通指南
- 酒店锅炉房检修服务协议
- 初中物理教师个人校本研修工作计划(20篇)
- 第七章消费者权益
- 齐鲁工业大学《食品原料学》2023-2024学年第一学期期末试卷
- 无薪留职协议样本
- 工业区污水净化服务合同
- 《建设项目工程总承包合同示范文本(试行)》GF-2011-0216
- 幼儿园中班音乐活动《小看戏》课件
- 2024年下半年贵州六盘水市直事业单位面向社会招聘工作人员69人易考易错模拟试题(共500题)试卷后附参考答案
- 实+用法律基础-形成性考核任务一-国开(ZJ)-参考资料
- 2024年小学校长工作总结(3篇)
- 江苏省扬州市2023-2024学年高一上学期1月期末考试 物理 含解析
评论
0/150
提交评论