版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2025届陕西省西安市经开第一学校数学九上开学达标检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=2,则△ABF的周长为()A.43 B.83 C.6+3 D.6+232、(4分)如图,在□ABCD中,已知AD=8cm,AB=5cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm3、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.84、(4分)一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)一次函数与的图象如图所示,则下列结论①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④a−b=3k−3中,正确的个数是()A.3个 B.2个 C.1个 D.4个6、(4分)下列等式一定成立的是()A.9-4=5 B.57、(4分)若关于x的方程的一个根是3,则m-n的值是A.-1 B.-3 C.1 D.38、(4分)如图,一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,拍出木棒,量得棒上没油部分长0.8m,则桶内油的高度为()A.0.28m B.0.64m C.0.58m D.0.32m二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,等腰直角△ABC中,∠BAC=90°,BC=6,过点C作CD⊥BC,CD=2,连接BD,过点C作CE⊥BD,垂足为E,连接AE,则AE长为_____.10、(4分)如图,函数和的图象交于点,则不等式的解集是_____.11、(4分)如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________.12、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.13、(4分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为80、90、82,若三项成绩分别按3:5:2,则她最后得分的平均分为_____.三、解答题(本大题共5个小题,共48分)14、(12分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?15、(8分)在四边形中,对角线、相交于点,过点的直线分别交边、、、于点、、、(1)如图①,若四边形是正方形,且,易知,又因为,所以(不要求证明)(2)如图②,若四边形是矩形,且,若,,,求的长(用含、、的代数式表示);(3)如图③,若四边形是平行四边形,且,若,,,则.16、(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.17、(10分)如图,一次函数y=-12x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2(1)求m的值及l2(2)求得SΔAOC-S(3)一次函数y=kx+1的图象为l3,且l1,l2,l318、(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在▱ABCD中,再添加一个条件_____(写出一个即可),▱ABCD是矩形(图形中不再添加辅助线)20、(4分)已知一组数据:0,2,x,4,5,这组数据的众数是4,那么这组数据的平均数是_____.21、(4分)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.22、(4分)若方程+2=的解是正数,则m的取值范围是___.23、(4分)若一组数据6,,3,5,4的众数是3,则这组数据的中位数是__________.二、解答题(本大题共3个小题,共30分)24、(8分)某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:(1)本次共调查了_名初中毕业生;(2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;(3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.25、(10分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.26、(12分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】∵AF⊥BC,点D是边AB的中点,∴AB=2DF=4,∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=12AB=2由勾股定理得,BF=AB则△ABF的周长=AB+AF+BF=4+2+23=6+23,故选:D.此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.2、C【解析】
根据在□ABCD中,AE平分∠BAD,得到∠BAE=∠AEB,即AB=BE,即可求出EC的长度.【详解】∵在□ABCD中,AE平分∠BAD,∴∠DAE=∠BAE,∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵AD=8cm,AB=5cm,∴BE=5cm,BC=8cm,∴CE=8-5=3cm,故选C.本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.3、C【解析】
∵EO是AC的垂直平分线,∴AE=CE.设CE=x,则ED=AD﹣AE=4﹣x.,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,CE的长为2.5故选C4、B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.5、A【解析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③④进行判断,联立方程解答即可.【详解】∵一次函数的图象经过第二、四象限,∴k<0,所以①正确;∵一次函数的图象与y轴的交点在x轴下方,∴a<0,所以②错误;∵x3时,一次函数=kx+b的图象都在函数=x+a的图象上方,∴不等式kx+bx+a的解集为x3,所以③正确;∵y=3+a,y=3k+ba=y−3,b=y−3k,∴a−b=3k−3,故④正确;故选:A此题考查一次函数与一元一次不等式,解题关键在于利用一次函数的性质6、B【解析】A.9-4=3-2=1,则原计算错误;B.5×3=15,正确;C.97、B【解析】
把x=1代入已知方程,即可求得(m-n)的值.【详解】解:由题意,得
x=1满足方程,
所以,9+1m-1n=0,
解得,m-n=-1.
故选B.本题考查一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.8、B【解析】
根据题意,画出图形,因为油面和桶底是平行的,所以可构成相似三角形,根据对应边成比例列方程即可解答.【详解】如图:AB表示木棒长,BC表示油桶高,DE表示油面高度,AD表示棒上浸油部分长,∴DE∥BC∴△ADE∽△ABC∴AD:AB=DE:BC∵AD=0.8m,AB=1m,BC=0.8m∴DE=0.64m∴桶内油面的高度为0.64m.故选B.本题考查勾股定理的运用,熟练掌握计算法则是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】分析:根据旋转的性质得到△ABF≌△ACE,进而得出△AEF为等腰直角三角形,根据两角对应相等的两三角形相似的判定可得△BCD∽△BEC,然后根据对应边成比例可得,然后根据勾股定理即可求解.详解:把AE逆时针旋转90°,使AE=AF交BD于F,根据旋转的性质可得△ABF≌△ACE,即BF=CE,∴△AEF是等腰直角三角形∵CD⊥BC,CE⊥BD∴∠BCD=∠CEB=90°∵∠DBC=∠CBD,∴△BCD∽△BEC∴∵BC=6,CD=2∴BD==即CE=∴DE=即BE=∴EF=——=∴AE=AF=故答案为:.点睛:此题主要考查了旋转变化的性质,等腰三角形的性质,相似三角形的判定与性质,勾股定理等知识,此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.10、【解析】
观察图象,写出直线在直线的下方所对应的自变量的范围即可.【详解】解:观察图象得:当时,,即不等式的解集为.故答案为:.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的解集.11、25【解析】
首先连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,然后根据直角三角形斜边中线定理,即可得出,,又由正方形的性质,得出AC=CD,BC=CF,阴影部分面积即为△CDO和△CFO之和,经过等量转换,即可得解.【详解】连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,如图所示∵,,点O为AB的中点,∴,又∵正方形和正方形,∴AC=CD,BC=CF∴此题主要考查勾股定理、直角三角形中位线定理以及正方形的性质,熟练掌握,即可解题.12、1.【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.【详解】解:如图,延长BD交AB于F,∵AD平分∠BAC,∴∠BAD=∠FAD,∵BD⊥AD,∴∠ADB=∠ADF=90°,在△ADF和△ADB中∴△ADF≌△ADB(ASA),∴AF=AB,BD=FD,∴CF=AC-AB=6-4=2cm,又∵点E为BC的中点,∴DE是△BCF的中位线,.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.13、85.4分【解析】
根据加权平均数的概念,注意相对应的权比即可求解.【详解】8030%+9050%+8220%=85.4本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】
(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.15、(1)见解析;(2);(3)【解析】
(1)根据正方形的性质和全等三角形的性质即可得出结论;(2)过作于,于,根据图形的面积得到,继而得出结论;(3)过作,,则,,根据平行四边形的面积公式得出,根据三角形的面积公式列方程即可得出结论.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴,,∵,∴,∴.(2)如图②,过作于,于,∵∴∵,∴,∴;(2)如图③,过作,,则,,∵,∴,∴,∵,,∴,∵,,∴,,,;故答案为:.本题考查的知识点是正方形的性质,通过作辅助线,利用面积公式求解是解此题的关键.16、(1)证明见解析(2)3【解析】试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.试题解析:(1)证明:∵AB="2CD",E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考点:1.梯形的性质;2.平行四边形的判定与性质;3.相似三角形的判定与性质.17、(1)m=52;y=32x;(2)252;(3)【解析】
(1)由y=-12x+5求出点C(2)分别求出ΔAOC,ΔBOC的面积即可;(3)l3∥l1,l3∥【详解】解:(1)∵点Cm,154∴把Cm,154代入y=-1设l2的解析式为y=ax,将点C52,∴l2的解析式为(2)y=-12x+5=0时,x=10,所以A(10,0),B(0,5),即OA=10,OB=5,由C52,154可知点C到S(3)由题意可得l3∥l1,当l3∥l1时,k=-12,当l3∥l2时,k=32所以当l1,l2,l3可以围成三角形时k的取值范围为k≠-12本题考查了一次函数,包括待定系数法求解析式及函数图像围成三角形的面积,正确理解题意,做到数形结合是解题的关键.18、30元【解析】试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.考点:分式方程的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、AC=BD【解析】
根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【详解】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.20、3【解析】
先根据众数的定义求出的值,再根据平均数的计算公式列式计算即可.【详解】解:,2,,4,5的众数是4,,这组数据的平均数是;故答案为:3;此题考查了众数和平均数,根据众数的定义求出的值是本题的关键,众数是一组数据中出现次数最多的数.21、1【解析】
连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.【详解】连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=,∴△BEQ周长的最小值=DE+BE=5+1=1.故答案为1.考点:本题考查的是轴对称-最短路线问题,熟知轴对称的性质是解答此题的关键.22、m<3且m≠2.【解析】
分式方程去分母转化为整式方程,由分式方程的解为正数,确定出m的范围即可.【详解】去分母得:m+2(x﹣1)=x+1,解得:x=3﹣m,由分式方程的解为正数,得到3﹣m>0,且3﹣m≠1,解得:m<3且m≠2,故答案为:m<3且m≠2.此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.23、4【解析】
因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.【详解】解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4解答本题的关键是确定x的值,即灵活应用中位数概念.二、解答题(本大题共3个小题,共30分)24、(1)100;(2)25%,画图见解析;(3)2500人.【解析】
(1)用类别A的人数除以类别A所占的百分比即可求出总数,(2)先求出类别B所占的百分比,然后用总数乘以类别为B的人数所占的百分比求得类别B的人数,再画图即可,(3)用该县2018年初三毕业生总数乘以读普通高中的学生所占的百分比即可.【详解】解:(1)本次共调查了60÷60%=100名初中毕业生;
故答案为:100;(2)类别为B的百分比为:1-60%-10%-5%=25%类别B的人数是100×25%=25(人),画图如下:(3)10000×25%=2500人∴该县今年九年级毕业生读职业高中的学生人数为2500人.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省南平市五夫中学高二化学上学期期末试题含解析
- 福建省南平市渭田中学2021年高二生物模拟试题含解析
- 福建省南平市太平中学高三数学文联考试题含解析
- 2 《烛之武退秦师》(说课稿)-2024-2025学年高一语文下学期同步教学说课稿专辑(统编版必修下册)
- 美术教育之光
- 解密清明节气
- 填分家协议书(2篇)
- 25王戎不取道旁李 说课稿-2024-2025学年四年级上册语文统编版
- 有偿使用场地租赁合同
- 租赁山地合同
- 无水氯化钙MSDS资料
- 专利产品“修理”与“再造”的区分
- 氨碱法纯碱生产工艺概述
- 健康管理专业建设规划
- 指挥中心大厅及机房装修施工组织方案
- 真心英雄合唱歌词
- 架空电力线路导线应力弧垂计算
- 上海交通大学留学生本科入学考试 英语
- 【校本教材】《身边的化学》高中化学校本课程
- 常住人口项目变更更正呈批表
- 产后访视技术规范
评论
0/150
提交评论