![第04讲解直角三角形(5种题型)(原卷版)_第1页](http://file4.renrendoc.com/view14/M05/14/2A/wKhkGWcTL0SAbil1AAF2Nh7nK6Q480.jpg)
![第04讲解直角三角形(5种题型)(原卷版)_第2页](http://file4.renrendoc.com/view14/M05/14/2A/wKhkGWcTL0SAbil1AAF2Nh7nK6Q4802.jpg)
![第04讲解直角三角形(5种题型)(原卷版)_第3页](http://file4.renrendoc.com/view14/M05/14/2A/wKhkGWcTL0SAbil1AAF2Nh7nK6Q4803.jpg)
![第04讲解直角三角形(5种题型)(原卷版)_第4页](http://file4.renrendoc.com/view14/M05/14/2A/wKhkGWcTL0SAbil1AAF2Nh7nK6Q4804.jpg)
![第04讲解直角三角形(5种题型)(原卷版)_第5页](http://file4.renrendoc.com/view14/M05/14/2A/wKhkGWcTL0SAbil1AAF2Nh7nK6Q4805.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲解直角三角形(5种题型)考点考点考向1.解直角三角形:在直角三角形中,由已知元素求出所有未知元素的过程.2.直角三角形的边角关系(中,)3.解直角三角形的应用(1)仰角与俯角在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;(2)坡度:坡面的铅垂高度h和水平宽度的比叫做坡面的坡度,记作,即;坡度表示形式:.坡面与水平面的夹角叫坡角,记为;坡度与坡角的关系:.考点考点精讲一.解直角三角形(共6小题)1.(2022•宝山区模拟)在平面直角坐标系xOy中,已知点P(1,2),点P与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A.2 B. C. D.2.(2021秋•宝山区期末)如图,已知Rt△ABC,CD是斜边AB边上的高,那么下列结论正确的是()A.CD=AB•tanB B.CD=AD•cotA C.CD=AC•sinB D.CD=BC•cosA3.(2022春•虹口区校级期中)如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A. B. C. D.4.(2021秋•嘉定区期末)在△ABC中,AB=AC=10,,那么BC的长是()A.4 B.8 C. D.5.(2021秋•奉贤区期末)在△ABC中,AB=2,∠BAC=30°.下列线段BC的长度不能使△ABC的形状和大小都确定的是()A.2 B.4 C. D.6.(2022•杨浦区三模)如图,已知在△ABC中,∠C=90°,BC=8,cosB=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为.二.解直角三角形的应用(共5小题)7.(2022春•闵行区校级期末)已知支点O位于等臂跷跷板AB的中点处,当AB的一端点A碰到地面时(如图),AB与地面的夹角为α,那么当AB的另一端点B碰到地面时,AB转过的角度为=.(用含α的代数式表示)8.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?9.(2022•长宁区模拟)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)10.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心点在最高位置与最低位置时的高度差.(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?11.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)三.解直角三角形的应用坡度坡角问题(共5小题)12.(2022•金山区二模)沿一斜坡向上走13米,高度上升5米,这个斜坡的坡度i=1:.13.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.14.(2022春•黄浦区期中)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.15.(2022春•奉贤区校级期中)某传送带与地面所成斜坡的坡度为i,如果它把物体从地面送到离地面10米高的地方,物体所经过的路程为26米,则i=.16.(2022春•浦东新区期中)如图,一个高BE为米的长方体木箱沿坡比为1:的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.四.解直角三角形的应用仰角俯角问题(共5小题)17.(2022•杨浦区三模)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点B处的俯角为45°,看到楼顶部点C处的仰角为60°,已知两栋楼之间的水平距离为6米,那么教学楼的高CB=米.(结果保留根号)18.(2022•松江区校级模拟)如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=30°;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为.19.(2022•徐汇区模拟)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.20.(2022春•青浦区期中)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.21.(2021秋•浦东新区校级期末)如图,一架飞机在点A处测得水平地面上一个标志物M的俯角为α,tanα=,水平飞行900米后,到达点B处,又测得标志物M的俯角为β,tanβ=,那么此时飞机离地面的高度为米.五.解直角三角形的应用方向角问题(共5小题)22.(2022•普陀区模拟)如图,在某海滨城市O附近海面有一股台风,据监测,当前台风中心位于该城市的南偏东20°方向200千米的海面P处,并以20千米/时的速度向P处的北偏西65°PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到千米:当台风中心移动t小时时,受台风侵袭的圆形区域半径增大到千米;(2)当台风中心移动到与城市O距离最近时,这股台风是否侵袭这座海滨城市?请说明理由.(参考数据≈1.41,≈1.73)23.(2021秋•杨浦区期末)如图,海中有一个小岛A,一艘轮船由西向东航行,在点B处测得小岛A在它的北偏东60°方向上,航行12海里到达点C处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线BC的距离等于海里.24.(2021秋•松江区期末)如图,码头A在码头B的正东方向,它们之间的距离为10海里.一货船由码头A出发,沿北偏东45°方向航行到达小岛C处,此时测得码头B在南偏西60°方向,那么码头A与小岛C的距离是海里(结果保留根号).25.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)26.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)巩固巩固提升一、选择题1.(2019新竹园9月考5)在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=,那么BC的长为()A.m•tan•cos B.m•cot•cos C.D.2.(浦东新区2020一模5)如图,传送带和地面所成斜坡的坡度为1:3,它把物体从地面点A处送到离地面3米高的B处,则物体从A到B所经过的路程为()A.3米 B.2米 C.米 D.9米二、填空题3.(静安2020一模13)如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)4.(奉贤2020一模14)小明从山脚出发,沿坡度为的斜坡前进了130米到达点,那么他所在的位置比原来的位置升高了__________米.5.(松江2020一模16)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB的坡度为.6.(嘉定区2019期中17)新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”如图所示,△ABC中AF、BE是中线,且AF⊥BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果∠ABE=30°,AB=6,那么此时AC的长为.7.(嘉定区2019期中16)如图,矩形ABCD中,点E在边BC上,EF⊥AE交AD于点F,若AB=2,BC=7,BE=5,则FD的长度为.8.(浦东四署2019期中17)如图,在四边形ABDC中,联结BC,,,,如果,那么______.9.(崇明2020一模18)如图,在中,,,,点是的中点,点在边上,将沿翻折,使得点落在点处,当时,那么的长为________________.10.(嘉定2020一模18)在中,,,,把绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点、,如果恰好经过点A,那么点A与点的距离为三、解答题(本大题共6题,每题10分,满分60分)11.(2019育才10月考21)已知:如图所示,中,CD⊥AB,,BD=1,AD=4,求AC的长.12.(浦东南片2019期中22)如图,在△ABC中,AB=AC=5,BC=8,D是边AB上一点,且tan∠BCD=(1)试求的值;(2)试求△BCD的面积.13.(浦东四署2019期中22)如图,在中,,点D是BC边上的一点,,,.(1)求AC和AB的长;(2)求的值.14.(川中南2019期中23)如图,在中,已知点是边上的点,(1)求的长;(2)求的值.15.(黄浦2020一模21)某数学小组在郊外的水平空地上对无人机进行测高实验.如图10,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)16.(静安2020一模22)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.732.)17.(青浦2020一模22)水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)18.(松江2020一模22)如图,小岛A在港口P的南偏西45°方向上,一艘船从港口P,沿着正南方向,以每小时12海里的速度航行,1小时30分钟后到达B处,在B处测得小岛A在它的南偏西60°的方向上.小岛A离港口P有多少海里?19.(长宁金山2020一模22)图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智慧社区建设投资入股分红管理协议
- 洗涤公司风险责任协议书(2篇)
- 沙漠露营探险合同
- 混悬剂项目融资渠道探索
- 二零二五年度网络安全应急响应外包安全保密协议
- 二零二五年护坡工程劳务分包合同(环保施工)节能减排条款2篇
- 2025年度男方出轨离婚协议书:财产分割与子女抚养安排协议
- 二零二五年度农业租赁市场运营管理合同
- 2025年彩钢板钢结构安装与物业管理合同3篇
- 二零二五年度临时道路运输合同(公路货运管理协议)2篇
- 2024年公安机关理论考试题库附答案【考试直接用】
- 课题申报参考:共同富裕进程中基本生活保障的内涵及标准研究
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- 康复医学科患者隐私保护制度
- 环保工程信息化施工方案
- 红色中国风2025蛇年介绍
- 2024年安徽省高考地理试卷真题(含答案逐题解析)
- 高中学校开学典礼方案
- 2024年度中国邮政集团公司县分公司工作总结
- DL∕T 1844-2018 湿式静电除尘器用导电玻璃钢阳极检验规范
- JTG D62-2004 公路钢筋混凝土及预应力混凝土桥涵设计规范
评论
0/150
提交评论