2025届福建省华安一中、龙海二中高二数学第一学期期末综合测试模拟试题含解析_第1页
2025届福建省华安一中、龙海二中高二数学第一学期期末综合测试模拟试题含解析_第2页
2025届福建省华安一中、龙海二中高二数学第一学期期末综合测试模拟试题含解析_第3页
2025届福建省华安一中、龙海二中高二数学第一学期期末综合测试模拟试题含解析_第4页
2025届福建省华安一中、龙海二中高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省华安一中、龙海二中高二数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的流程图,则输出k的值为()A.3 B.4C.5 D.22.若等比数列满足,,则数列的公比为()A. B.C. D.3.已知直线,,,则m值为()A. B.C.3 D.104.若,则下列正确的是()A. B.C. D.5.已知两直线与,则与间的距离为()A. B.C. D.6.已知点,若直线与线段没有公共点,则的取值范围是()A. B.C. D.7.过点作圆的切线,则切线的方程为()A. B.C.或 D.或8.已知向量,.若,则()A. B.C. D.9.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.410.抛物线的焦点到准线的距离为()A. B.C. D.111.若在直线上,则直线的一个方向向量为()A. B.C. D.12.若方程表示双曲线,则实数m的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数据:1,1,3,4,6的方差是______.14.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)15.沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________.16.已知双曲线,(,)的左右焦点分别为,过的直线与圆相切,与双曲线在第四象限交于一点,且有轴,则直线的斜率是___________,双曲线的渐近线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)设x=2是函数f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当时,.18.(12分)已知圆,直线(1)证明直线与圆C一定有两个交点;(2)求直线与圆相交的最短弦长,并求对应弦长最短时的直线方程19.(12分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.20.(12分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.21.(12分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.22.(10分)如图,四棱锥P-ABCD的底面是矩形,底面ABCD,,M为BC中点,且.(1)求BC;(2)求二面角A-PM-B的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据程序框图运行程序,直到满足,输出结果即可.【详解】按照程序框图运行程序,输入,则,,不满足,循环;,,不满足,循环;,,不满足,循环;,,满足,输出结果:故选:B.2、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D3、C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C4、D【解析】根据不等式性质并结合反例,即可判断命题真假.【详解】对于选项A:若,则,由题意,,不妨令,,则此时,这与结论矛盾,故A错误;对于选项B:当时,若,则,故B错误;对于选项C:由,不妨令,,则此时,故C错误;对于选项D:由不等式性质,可知D正确.故选:D.5、B【解析】把直线的方程化简,再利用平行线间距离公式直接计算得解.【详解】直线的方程化为:,显然,,所以与间的距离为.故选:B6、A【解析】分别求出,即可得到答案.【详解】直线经过定点.因为,所以,所以要使直线与线段没有公共点,只需:,即.所以的取值范围是.故选:A7、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C8、A【解析】根据给定条件利用空间向量平行的坐标表示直接计算作答.【详解】向量,,因,则,解得,所以,B,D都不正确;,C不正确,A正确.故选:A9、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.10、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.11、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D12、A【解析】方程化为圆锥曲线(椭圆与双曲线)标准方程的形式,然后由方程表示双曲线可得不等关系【详解】解:方程可化为,它表示双曲线,则,解得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##3.6【解析】先计算平均数,再计算方差.【详解】该组数据的平均数为,方差为故答案为:14、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.15、33【解析】根据分层抽样的性质进行求解即可.【详解】因为抽取了一个容量为n的样本,其中高三学生有11人,所以有,故答案为:3316、①.②.【解析】由题意,不妨设直线与圆相切于点,由可得,代入双曲线方程,可得,因此,即得解【详解】如图所示,不妨设直线与圆相切于点,,由于代入进入,可得,渐近线方程为故答案为:,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),的单调递减区间为,单调递增区间为;(2)证明见解析;【解析】(1)求出函数的定义域与导函数,依题意可得,即可求出参数的值,再根据导函数与函数的单调性的关系求出函数的单调区间;(2)依题意可得,令,即证,,又,所以即证,令,利用导数说明其单调性,即可得解;【详解】解:(1)因为,定义域为,所以,因为是函数的极值点,所以,所以,解得,所以,令,则,所以在上单调递增,又,所以当时,,即,所以在上单调递减,当时,,即,所以上单调递增,综上可得的单调递减区间为,单调递增区间为;(2)证明:依题意即证,即证,令,则,所以即证,因为,所以即证,令,则,所以当时,,当时,所以,所以,所以当时,18、(1)证明见解析(2)答案见解析【解析】(1)由,变形为求解直线过的定点,即可得解;(2)法一:由圆心和连线与直线垂直求解;法二:由圆心到直线距离最大时求解.【小问1详解】解:,所以,令,所以直线经过定点,圆可变形为,因为,所以定点在圆内,所以直线和圆C相交,有两个交点;【小问2详解】法一:圆心为,到距离为,圆心与连线的斜率为,最短弦与圆心和的连线垂直,所以,所以最短弦长为,直线的方程为法二:圆心到直线距离:,,要求d的最大值,则,当且仅当时,d的最大值为,所以最短弦长为,直线的方程为.19、(1),;(2)6万千克,万元.【解析】(1)根据题意找等量关系即可求g(x)解析式,根据函数值可求a;(2)根据g(x)导数研究其单调性并求其最大值即可.【小问1详解】种植万千克莲藕的利润(单位:万元)为:,,即,,当时,,解得,故,;【小问2详解】,当时,,当时,,∴函数在上单调递增,在上单调递减,∴时,利润最大为万元.20、(1)(2)存在,【解析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程与椭圆方程化简可得,设,,可得,,由此证明,再证明当直线的斜率不存在时也成立,由此确定存在实数t,使得恒成立【小问1详解】由已知得,离心率,所以,故椭圆E的方程为.【小问2详解】当直线l的斜率存在时,设,,,联立方程组得,,所以,..,,所以.所以.当直线l的斜率不存在时,,联立方程组,得,.,,所以.综上,存在实数使得恒成立.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21、(1);(2).【解析】(1)根据题意作出图形,然后求出关于直线的对称点,进而根据圆的性质求出到圆上的点的最短距离即可;(2)将直线方程代入圆的方程并化简,进而结合韦达定理求得答案.【小问1详解】若军营所在区域为,圆:的圆心为原点,半径为,作图如下:设将军饮马点为,到达营区点为,设为A关于直线的对称点,因为,所以线段的中点为,则,又,联立解得:,即,所以总路程,要使得总路程最短,只需要最短,即点到圆上的点的最短距离,即为.【小问2详解】过点A倾斜角为45°的直线方程为:,设两个交点,联立,消去y得.由韦达定理,,.22、(1);(2).【解析】(1)根据给定条件推导证得,再借助直角三角形中锐角的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论