2025届重庆康德卷高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2025届重庆康德卷高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2025届重庆康德卷高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2025届重庆康德卷高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2025届重庆康德卷高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆康德卷高一数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行2.的值是A.0 B.C. D.13.如图所示的时钟显示的时刻为,此时时针与分针的夹角为.若一个半径为的扇形的圆心角为,则该扇形的面积为()A. B.C. D.4.已知函数,则A.0 B.1C. D.25.已知函数是定义在R上的偶函数,若对于任意不等实数,,,不等式恒成立,则不等式的解集为()A. B.C. D.6.已知角的终边经过点,则()A. B.C. D.7.设全集,集合,集合,则集合()A. B.C. D.8.已知,,,则,,三者的大小关系是()A. B.C. D.9.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)10.设函数若是奇函数,则()A. B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.__________.12.已知点为圆上的动点,则的最小值为__________13.若“”是“”的必要不充分条件,则实数的取值范围为___________.14.函数的部分图象如图所示.则函数的解析式为______15.把物体放在冷空气中冷却,如果物体原来的温度是θ1,空气的温度是θ0℃,那么t后物体的温度θ(单位:)可由公式(k为正常数)求得.若,将55的物体放在15的空气中冷却,则物体冷却到35所需要的时间为___________.16.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调区间;(2)求函数图象的对称中心的坐标和对称轴方程18.设矩形的周长为,其中,如图所示,把它沿对角线对折后,交于点.设,.(1)将表示成的函数,并求定义域;(2)求面积的最大值.19.已知(1)当时,求的值;(2)若的最小值为,求实数的值;(3)是否存在这样的实数,使不等式对所有都成立.若存在,求出的取值范围;若不存在,请说明理由20.已知函数,若,且,.(1)求与的值;(2)当时,函数的图象与的图象仅有一个交点,求正实数的取值范围.21.已知向量,,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.2、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B3、C【解析】求出的值,利用扇形的面积公式可求得扇形的面积.【详解】由图可知,,所以该扇形的面积故选:C.4、B【解析】,选B.5、C【解析】由条件对于任意不等实数,,不等式恒成立可得函数在上为减函数,利用函数性质化简不等式求其解.【详解】∵函数是定义在R上的偶函数,∴,∴不等式可化为∵对于任意不等实数,,不等式恒成立,∴函数在上为减函数,又,∴,∴,∴不等式的解集为故选:C.6、C【解析】根据任意角的三角函数的定义,求出,再利用二倍角公式计算可得.【详解】解:因为角的终边经过点,所以,所以故选:C7、D【解析】利用补集和交集的定义可求得结果.【详解】由已知可得或,因此,,故选:D.8、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C9、B【解析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.10、A【解析】先求出的值,再根据奇函数的性质,可得到的值,最后代入,可得到答案.【详解】∵奇函数故选:A【点睛】本题主要考查利用函数的奇偶性求值的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.12、-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.13、##【解析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.14、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.15、2【解析】将数据,,,代入公式,得到,解指数方程,即得解【详解】将,,,代入得,所以,,所以,即.故答案为:216、(1).(2).或【解析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为(2)对称中心的坐标为;对称轴方程为【解析】(1)将函数转化为,利用正弦函数的单调性求解;(2)利用正弦函数的对称性求解;【小问1详解】解:由.令,解得,令,解得,故函数的增区间为,减区间为;【小问2详解】令,解得,可得函数图象的对称中心的坐标为,令,解得,可得函数图象的对称轴方程为18、(1),;(2)【解析】(1)由题意得,则,根据,可得,所以,化简整理,即可求得y与x的关系,根据,即可求得x的范围,即可得答案;(2)由(1)可得,,则的面积,根据x的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:,则,因为在和中,,所以,即,所以在中,,所以,化简可得,因为,所以,解得,所以,;(2)由(1)可得,,所以面积,因为,所以,所以,当且仅当,即时等号成立,此时面积,即面积最大值为【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.19、(1)(2)或(3)存在,的取值范围为【解析】(1)先化简,再代入进行求解;(2)换元法,化为二次函数,结合对称轴分类讨论,求出最小值时m的值;(3)换元法,参变分离,转化为在恒成立,根据单调性求出取得最大值,进而求出的取值范围.【小问1详解】,当时,【小问2详解】设,则,,,其对称轴为,的最小值为,则;的最小值为;则综上,或【小问3详解】由,对所有都成立.设,则,恒成立,在恒成立,当时,递减,则在递增,时取得最大值得,∴所以存在符合条件的实数,且m的取值范围为20、(1),.(2).【解析】(1)由,可得,结合,得,,则,;(2),,,分三种情况讨论,时,时,结合二次函数对称轴与单调性,以及对数函数的单调性,可筛选出符合题意的正实数的取值范围.试题解析:(1)设,则,因为,因为,得,,则,.(2)由题可知,,.当时,,在上单调递减,且,单调递增,且,此时两个图象仅有一个交点.当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论