版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东青岛平度第三中学2025届高一数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则()A. B.C. D.12.设、、依次表示函数,,的零点,则、、的大小关系为()A. B.C. D.3.下列函数是奇函数,且在上单调递增的是()A. B.C. D.4.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.105.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数6.已知函数在上是增函数,则的取值范围是()A., B.,C., D.,7.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为8.不等式的解集是()A B.C.或 D.或9.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.10.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则的最小值为__________.12.在中,,,与的夹角为,则_____13.函数的定义域为_________________________14._____________15.设函数和函数,若对任意都有使得,则实数a的取值范围为______16.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)的定义域为D,如果存在x0∈D,使得fx0=x0,则称x0为f(x)的一阶不动点;如果存在x0∈D(1)分别判断函数y=2x与(2)求fx=x(3)求fx18.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.19.(1)已知,,求的值.(2)证明:.20.已知函数在上最大值为3,最小值为(1)求的解析式;(2)若,使得,求实数m的取值范围21.已知函数(1)若的定义域为R,求a的取值范围;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由分段函数定义计算【详解】,所以故选:D2、D【解析】根据题意可知,的图象与的图象的交点的横坐标依次为,作图可求解.【详解】依题意可得,的图象与的图象交点的横坐标为,作出图象如图:由图象可知,,故选:D【点睛】本题主要考查了幂函数、指数函数、对数函数的图象,函数零点,数形结合的思想,属于中档题.3、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.4、A【解析】由题意可知kAB==-2,所以m=-8.故选A5、C【解析】根据奇偶性的定义判断即可;【详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C6、D【解析】先根据题意建立不等式组,再求解出,最后给出选项即可.【详解】解:因为函数在上是增函数,所以,解得,则故选:D.【点睛】本题考查利用分段函数的单调性求参数范围,是基础题7、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.8、D【解析】将分式不等式移项、通分,再转化为等价一元二次不等式,解得即可;【详解】解:∵,,即,等价于且,解得或,∴所求不等式的解集为或,故选:D.9、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.10、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.12、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.13、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)14、【解析】利用指数与对数的运算性质,进行计算即可【详解】.【点睛】本题考查了指数与对数的运算性质,需要注意,属于基础题15、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题16、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)y=2x不存在一阶不动点,(2)0,±1(3)3【解析】(1)根据一阶不动点的定义直接分别判断即可;(2)根据一阶不动点的定义直接计算;(3)根据分段函数写出ffx【小问1详解】设函数gx=2x-x,x∈R所以g'x=又g'0=所以∃x0∈0,1,时所以gx在-∞,所以gx≥x所以y=2设函数y=x存在一阶不动点,即存在x0∈0,+∞上,使x【小问2详解】由已知得fx0=x0所以fx=xx2-1【小问3详解】由fx当0<x≤1时,fx=e设Fx=2-ex2-x,x∈0,1,F'x=-ex2-1<0恒成立,所以Fx在0,1上单调递减,且F当1<x<4时,fx=2-x所以1<x<2时,fx=2-x2∈1,32,ffx=2-2-x当2≤x<4时,fx=2-x2∈0,1,ffx=e2-x2,设Gx=e2-x2-x,G'综上所述,fx的二阶周期点的个数为318、见解析【解析】连接AF并延长交BC于M.连接PM,因为AD∥BC,∴,又,∴,所以EF∥PM,从而得证.试题解析:连接AF并延长交BC于M.连接PM.因AD∥BC,所以=.又由已知=,所以=.由平面几何知识可得EF∥PM,又EF⊄平面PBC,PM⊂平面PBC,所以EF∥平面PBC.19、(1);(2)证明见解析.【解析】(1)对已知式子分别平方相加即可求得.(2)分别求解左边和右边,即可证明.【详解】(1)由,,分别平方得:,。两式相加可得:,整理化简得:.(2)证明:左边.右边,所以左边=右边,即原不等式成立.20、(1)(2)【解析】(1)根据的最值列方程组,解方程组求得,进而求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《万以内数的认识-1000以内数的认识》(教学实录)-2023-2024学年二年级下册数学人教版
- 小学信息技术第三册下 第6课 奇妙有趣的新本领-如何在Logo中定义过程教学实录 泰山版
- 读《边城》有感(汇编15篇)
- 昆虫记读书笔记集合15篇
- 毕业生个人小结(6篇)
- 商务实习报告范文集合4篇
- 房地产工作人员辞职报告集合5篇
- Novation诺维逊FLkey37中文说明书
- 股票成本计算器
- 高中数学选修必修2-圆锥曲线的统一定义
- 2024年春季国开《学前教育科研方法》期末大作业(参考答案)
- 2024年中考物理复习精讲练(全国)专题22 计算题(力热电综合)(讲练)【学生卷】
- GB/T 43909-2024叉车属具安全要求
- 水利水电安全生产评估报告
- 第7课珍视亲情学会感恩(课件)-【中职专用】高一思想政治《心理健康与职业生涯》(高教版2023·基础模块)
- MOOC 宏观经济学-南京财经大学 中国大学慕课答案
- 三年级语文试卷讲评市公开课一等奖省赛课获奖课件
- 湖南少数民族舞蹈智慧树知到期末考试答案2024年
- 扬州市江都区2022-2023学年八年级上学期期末道德与法治试题(含答案解析)
- 仓储物流部的安全与风险管理措施
- 征兵体检人员培训课件
评论
0/150
提交评论