版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市崇明县大同中学高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,则A. B.4C. D.82.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为()A.2 B.C.1 D.3.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数4.的值是A. B.C. D.5.设函数(),,则方程在区间上的解的个数是A. B.C. D.6.已知函数,若的最小正周期为,则的一条对称轴是(
)A. B.C. D.7.函数的部分图像是A. B.C. D.8.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.49.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.当时,的最大值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________12.把函数的图像向右平移后,再把各点横坐标伸长到原来的2倍,所得函数解析式是______13.已知在上的最大值和最小值分别为和,则的最小值为__________14.函数(且)的图象过定点___________.15.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________16.已知平面向量,,,,,则的值是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求两条平行直线3x+4y-6=0与ax+8y-4=0间的距离(2)求两条垂直的直线2x+my-8=0和x-2y+1=0的交点坐标18.如图所示,矩形所在平面,分别是的中点.(1)求证:平面.(2)19.新冠肺炎期间,呼吸机成为紧缺设备,某企业在国家科技的支持下,进行设备升级,生产了一批新型的呼吸机.已知该种设备年固定研发成本为60万元,每生产一台需另投入100元,设该公司一年内生产该设备万台,且全部售完,由于产能原因,该设备产能最多为32万台,且每万台的销售收入(单位:万元)与年产量(单位:万台)的函数关系式近似满足:(1)写出年利润(万元)关于年产量(万台)的函数解析式.(年利润=年销售收入-总成本);(2)当年产量为多少万台时,该公司获得的利润最大?20.设全集实数集,,(1)当时,求和;(2)若,求实数的取值范围21.已知函数.(1)判断的奇偶性,并证明;(2)判断的单调性,并用定义加以证明;(3)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为函数,所以,,故选D.【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出的值,进而得到的值.2、D【解析】圆心为,点到直线的距离为.故选D.3、C【解析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题4、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.5、A【解析】由题意得,方程在区间上的解的个数即函数与函数的图像在区间上的交点个数在同一坐标系内画出两个函数图像,注意当时,恒成立,易得交点个数为.选A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.但在应用图象解题时要注意两个函数图象在同一坐标系内的相对位置,要做到观察仔细,避免出错6、C【解析】由最小正周期公式有:,函数的解析式为:,函数的对称轴满足:,令可得的一条对称轴是.本题选择C选项.7、D【解析】根据函数的奇偶性和函数值在某个区间上的符号,对选项进行排除,由此得出正确选项.【详解】∵是奇函数,其图像关于原点对称,∴排除A,C项;当时,,∴排除B项.故选D.【点睛】本小题主要考查函数图像的识别,考查函数的单调性,属于基础题.8、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B9、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含10、B【解析】利用基本不等式直接求解.【详解】,,又,当且仅当,即时等号成立,所以的最大值为故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.12、【解析】利用三角函数图像变换规律直接求解【详解】解:把函数的图像向右平移后,得到,再把各点横坐标伸长到原来的2倍,得到,故答案为:13、【解析】如图:则当时,即时,当时,原式点睛:本题主要考查了分段函数求最值问题,在定义域为动区间的情况下进行分类讨论,先求出最大值与最小值的情况,然后计算,本题的关键是要注意数形结合,结合图形来研究最值问题,本题有一定的难度14、【解析】由可得图像所过的定点.【详解】当时,,故的图像过定点.填.【点睛】所谓含参数的函数的图像过定点,是指若是与参数无关的常数,则函数的图像必过.我们也可以根据图像的平移把复杂函数的图像所过的定点归结为常见函数的图像所过的定点(两个定点之间有平移关系).15、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为16、【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3,2)【解析】(1)根据两平行线的距离公式得到两平行线间的距离为;(2)联立直线可求得交点坐标.解析:(1)由,得两条直线的方程分别为3x+4y-6=0,6x+8y-4=0即3x+4y-2=0所以两平行线间的距离为(2)由2-2m=0,得m=1由,得所以交点坐标为(3,2)18、(1)见解析;(2)见解析【解析】试题分析:(1)取的中点,连接,构造平行四边形,证得线线平行,进而得到线面平行;(2)由第一问得到,又因为平面,,进而证得结论解析:(1)证明:取的中点,连接,分别是的中点,,,四边形是平行四边形,平面,平面,平面.(2)平面,,又,平面,,又,.点睛:这个题目考查了线面平行的证明,线线垂直的证明.一般证明线面平行是从线线平行入手,通过构造平行四边形,三角形中位线,梯形底边等,找到线线平行,再证线面平行.证明线线垂直也可以从线面垂直入手19、(1);(2)年产量为30万台,利润最大.【解析】(1)根据题设给定的函数模型及已知条件,求函数解析式.(2)利用二次函数、分式型函数的性质求分段函数各区间的最大值,并确定对应的自变量值,即可得解.小问1详解】,∴.【小问2详解】当时,,故在上单调递增,∴时,取最大值,当时,,当且仅当时等号成立,∴当时,,综上,当年产量为30万台时,该公司获得最大利润,最大利润为790万元.20、(1),;(2).【解析】把代入集合B,求出集合B的解集,再根据交集和并集的定义进行求解;因为,可知,求出,再根据子集的性质进行求解;【详解】(1)由题意,可得,当时,,则,若,则或,、当时,,满足A.当时,,又,则综上,【点睛】本题主要考查了交集和并集的定义以及子集的性质,其中解答中熟记集合的运算,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及推理与运算能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度货物出口合同标的及出口手续
- 二零二四年度技术服务合同技术咨询服务合同04年专用
- 底薪加提成薪资制度合同(2篇)
- 二零二四年度货物采购合同(含详细技术参数与交付时间表)
- 二零二四年度电商企业软件许可合同
- 内控优化咨询合作协议
- 长期借款协议续借格式
- 建设工程施工合同(示范文本)
- 建筑钢管架劳务分包合同
- 生石灰购销意向协议
- 天目里分析报告
- 16法理学-法与正义
- 人教版小学一年级英语下册Unit4-food课件
- 益生菌产品活动策划
- 妇科护理-异常子宫出血的护理
- 驾照体检表完整版本
- 2023-2024年四川省成都市某校高一上学期12月阶段性测试物理试题 (解析版)
- 客运员出站口岗位规范
- 物业安管主管的安全监督与检查技巧
- 大型医院检验科完整SOP程序文件
- 纯水机结构及工作原理
评论
0/150
提交评论