嘉兴市重点中学2025届高一上数学期末达标检测模拟试题含解析_第1页
嘉兴市重点中学2025届高一上数学期末达标检测模拟试题含解析_第2页
嘉兴市重点中学2025届高一上数学期末达标检测模拟试题含解析_第3页
嘉兴市重点中学2025届高一上数学期末达标检测模拟试题含解析_第4页
嘉兴市重点中学2025届高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

嘉兴市重点中学2025届高一上数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度2.已知,且在区间有最大值,无最小值,则=()A B.C. D.3.若,则的值为A. B.C. D.4.“”是“”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件5.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.6.用长度为24米的材料围成一矩形场地,中间加两道隔墙(如图),要使矩形的面积最大,则隔墙的长度为A.3米 B.4米C.6米 D.12米7.设函数满足,当时,,则()A.0 B.C. D.18.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.9.已知,,,则a,b,c的大小关系为()A. B.C. D.10.已知直线与圆交于A,两点,则()A.1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则函数的值域为______12.计算_____________.13.已知偶函数在单调递减,.若,则的取值范围是__________.14.如果,且,则化简为_____.15.函数满足,且在区间上,则的值为____16.已知函数,则满足的的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知,分别是正方体的棱,的中点.求证:平面平面.18.如图,正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且求二面角的正切值;求三棱锥的体积19.某市3000名市民参加“美丽城市我建设”相关知识初赛,成绩统计如图所示(1)求a的值;(2)估计该市参加考试的3000名市民中,成绩在上的人数;(3)若本次初赛成绩前1500名参加复赛,则进入复赛市民的分数线应当如何制定(结果保留两位小数)20.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.21.已知且满足不等式.(1)求不等式;(2)若函数在区间有最小值为,求实数值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.2、C【解析】结合题中所给函数的解析式可得:直线为的一条对称轴,∴,∴,又,∴当k=1时,.本题选择C选项.3、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.4、D【解析】求得的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由,可得或,所以“”是“或”成立的充分不必要条件,所以“”是“”必要不充分条件.故选:D.5、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础6、A【解析】主要考查二次函数模型的应用解:设隔墙长度为,则矩形另一边长为=12-2,矩形面积为=(12-2)=,0<<6,所以=3时,矩形面积最大,故选A7、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A8、D【解析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.9、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.10、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.12、【解析】将所给式子通分后进行三角变换可得结果【详解】由题意得故答案为:【点睛】易错点睛:本题考查三角恒等化简,本题的关键是通分后用正弦的差角公式,在由化成时注意角的顺序,这是容易出错的地方,考查运算能力,属于中档题.13、【解析】因为是偶函数,所以不等式,又因为在上单调递减,所以,解得.考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是关键.14、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:15、【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】取的中点,连接、,则,进一步得到四边形为平行四边形,同理得到四边形为平行四边形,结合线面平行的判定即可得到结果.【详解】证明:取的中点,连接、.因为、分别为、的中点,.四边形为平行四边形..、分别为、的中点,∴,∴四边形为平行四边形,∴,∴.∵平面,平面,平面又,平面平面.【点睛】本题主要考查面面平行的判定,属于基础题型.18、(1)2(2)【解析】取BC中点O,中点E,连结OE,OA,以O为原点,OD为x轴,OE为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角的正切值三棱锥的体积,由此能求出结果【详解】取BC中点O,中点E,连结OE,OA,由正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且以O为原点,OD为x轴,OE为y轴,OA为z轴,建立空间直角坐标系,则3,,0,,0,,0,,所以0,,3,,其中平面ABD的法向量1,,设平面的法向量y,,则,取,得1,,设二面角的平面角为,则,则,则,所以二面角的正切值为2由(1)可得平面,所以是三棱锥的高,且,所以三棱锥的体积:【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题19、(1);(2)1950;(3)进入复赛市民的分数应当大于或等于77.14.【解析】(1)根据频率之和为,结合频率分布直方图即可求得;(2)根据(1)中所求,求得成绩在的频率,根据频数计算公式即可求得结果;(3)根据频率分布直方图中位数的求解,结合已知数据,即可求得结果.【小问1详解】依题意,,故.【小问2详解】成绩在[70,90)上的频率为,所以,所求人数为3000×0.65=1950.【小问3详解】依题意,本次初赛成绩前1500名参加复赛,即求该组数据的中位数,因为≈77.14所以,进入复赛市民的分数应当大于或等于77.14.20、(1);;(2)在其定义域为单调增函数.【解析】(1)由,可得,再由,可求出的值,从而可得函数的解析式;(2)利用函数的单调性定义进行判断即可【详解】解:(1)由,得,,得;所以;(2)该函数的定义域为,令,所以,所以,因为,,所以,所以在其定义域为单调增函数.21、(1);(2).【解析】(1)运用指数不等式的解法,可得的范围,再由对数不等式的解法,可得解集;(2)由题意可得函数在递减,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论