专题10.7相交线平行线与平移章末重难点突破(举一反三)(沪科版)_第1页
专题10.7相交线平行线与平移章末重难点突破(举一反三)(沪科版)_第2页
专题10.7相交线平行线与平移章末重难点突破(举一反三)(沪科版)_第3页
专题10.7相交线平行线与平移章末重难点突破(举一反三)(沪科版)_第4页
专题10.7相交线平行线与平移章末重难点突破(举一反三)(沪科版)_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10.7相交线、平行线与平移章末重难点突破【沪科版】【考点1相交线中的规律问题】【例1】(2021秋•市南区期末)平面内两两相交的7条直线,其交点个数最少是m个,最多是n个,则m+n的值为()A.18 B.20 C.22 D.24【分析】根据平面内两两相交直线交点的个数所呈现的规律得出,m、n的值即可.【解答】解:平面内两两相交的7条直线,其交点个数最少是1个,即m=1,平面内两两相交的7条直线,其交点个数最多是1+2+3+4+5+6=21(个),即n=21,所以m+n=22,故选:C.【变式11】(2020秋•奉化区校级期末)观察如图,并阅读图形下面的相关文字:两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;4条直线相交,最多有6个交点……像这样,20条直线相交,交点最多的个数是()A.100个 B.135个 C.190个 D.200个【分析】根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=12n(n﹣【解答】解:2条直线相交最多有1个交点,1=12×13条直线相交最多有3个交点,3=1+2=12×24条直线相交最多有6个交点,6=1+2+3=12×35条直线相交最多有10个交点,10=1+2+3+4=12×4…n条直线相交最多有交点的个数是:12n(n﹣120条直线相交最多有交点的个数是:12n(n﹣1)=12×20×故选:C.【变式12】(2021秋•杏花岭区校级期中)(1)直线l1与l2是同一平面内的两条相交直线,它们有一个交点,如果在这个平面内,再画第三条直线l3,则这三条直线最多有3个交点;(2)如果在(1)的基础上在这个平面内再画第四条直线l4,则这四条直线最多可有6个交点.(3)由(1)(2)我们可以猜想:在同一平面内,n(n>1)条直线最多有n(n【分析】要探求相交直线的交点的最多个数,则应尽量让每两条直线产生不同的交点.根据两条直线相交有一个交点,画第三条直线时,应尽量和前面两条直线再产生2个,即有1+2=3个交点.依此类推即可找到规律.【解答】解:(1)三条直线相交交点最多为:1+2=3;(2)四条直线相交交点最多为:1+2+3=6;(3)五条直线相交交点最多为:1+2+3+4=10;六条直线相交交点最多为:1+2+3+4+5=15;…;n条直线相交交点最多为:1+2+3+…+n﹣1=n故答案为:3,6,n(【变式13】(2021春•自贡期末)同一平面内1条直线把平面分成两个部分(或区域);2条直线最多可将平面分成几个部分?3条直线最多可将平面分成几个部分?4条直线最多可将平面分成几个部分?请分别画出图来.由此可知n条直线最多可将平面分成几个部分?【分析】根据直线两两相交,每三条不交于同一点,可把平面分成最多部分,根据两条直线最多分成的部分比一条直线分成部分增加2,三条直线最多分成部分比两条直线最多分成部分增加三,以此类推,可得答案.【解答】解:2条直线最多可将平面分成4个部分,如图;三条直线最多分成可将平面分成7个部分,如图;四条直线最多分成可将平面分成11个部分,如图;n条直线最多分成可将平面分成2+2+3+4+…+n=n【考点2相交线与平行线中的概念判断】【例2】(2021秋•渝中区校级期末)下列命题是真命题的有()(1)过两点有且只有一条线段;(2)两点之间直线最短;(3)两条直线被第三条直线所截,同位角相等;(4)过一点有且只有一条直线与已知直线垂直;(5)平移前后连接各组对应点的线段平行(或共线)且相等.A.0个 B.1个 C.2个 D.3个【分析】根据线段的性质、平行线的性质、平移的性质判断即可.【解答】解:(1)过两点有且只有一条线段,是真命题;(2)两点之间线段最短,原命题是假命题;(3)两条平行线被第三条直线所截,同位角相等,原命题是假命题;(4)在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;(5)平移前后连接各组对应点的线段平行(或共线)且相等,是真命题;故选:C.【变式21】(2021秋•南岗区校级月考)下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据对顶角、点到直线的距离、邻补角、垂线解决此题.【解答】解:①具有公共顶点,两边互为反向延长线的两个角为对顶角,故①不正确.②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故②不正确.③互为邻补角的两个角的和为180°,那么互为邻补角的两个角的平分线互相垂直,故③正确.④同一平面内,经过一点有且只有一条直线与已知直线垂直,故④不正确.综上:正确的有③,共1个.故选:A.【变式22】(2021春•饶平县校级月考)下列说法:①若a与c相交,b与c相交,则a与b相交;②若a║b,b║c,那么a║c;③经过直线外一点有且只有一条直线与已知直线平行.④两条直线的位置关系有平行与相交.其中错误的说法有()A.3个 B.2个 C.1个 D.0个【分析】利用同一个平面内,两条直线的位置关系解答.【解答】解:①若a与c相交,b与c相交,则a与b不一定相交,可能平行,错误;②若a║b,b║c,那么a║c,正确;③过直线外一点有且只有一条直线与已知直线平行;故正确.④在同一平面内,两条直线的位置关系有平行、相交、两种;故错误,故选:B.【变式23】(2021秋•丰泽区期末)下列说法:①平面内,垂直于同一直线的两条直线平行;②两条直线被第三条直线所截,内错角相等;③如果直线a∥b,b∥c,那么a∥c;④直线外一点与直线上各点连接的所有线段中,垂线段最短;⑤两平行线被第三条直线所截,同旁内角的角平分线互相垂直.其中正确的有()A.2个 B.3个 C.4个 D.5个【分析】依据平行公理,垂线段最短以及平行线的性质,即可得出结论.【解答】解:①平面内,垂直于同一直线的两条直线平行,原说法正确;②两条平行线被第三条直线所截,内错角相等,原说法错误;③如果直线a∥b,b∥c,那么a∥c,原说法正确;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原说法正确;⑤两条平行线被第三条直线所截,同旁内角的角平分线互相垂直,原说法正确.其中正确的是①③④⑤,共4个.故选:C.【考点3运用方程思想求角】【例3】(2021春•武昌区期中)如图,直线MD、CN相交于点O,OA是∠MOC内的一条射线,OB是∠NOD内的一条射线,∠MON=70°.(1)若∠BOD=12∠COD,求∠(2)若∠AOD=2∠BOD,∠BOC=3∠AOC,求∠BON的度数.【分析】(1)根据对顶角的定义可得∠COD的度数,再根据∠BOD=12∠COD可得∠(2)设∠AOC=x°,则∠BOC=3x°,利用角的和差运算即可解得x,进而可得∠BON的度数.【解答】解:(1)∵∠MON=70°,∴∠COD=∠MON=70°,∴∠BOD=12∠COD∴∠BON=180°﹣∠MON﹣∠BOD=180°﹣70°﹣35°=75°;(2)设∠AOC=x°,则∠BOC=3x°,∵∠COD=∠MON=70°,∴∠BOD=∠BOC﹣∠COD=3x°﹣70°,∴∠AOD=∠AOC+∠COD=x°+70°,∵∠AOD=2∠BOD,∴x+70=2(3x﹣70),解得x=42,∴∠BOD=3x°﹣70°=3×42°﹣70°=56°,∴∠BON=180°﹣∠MON﹣∠DOB=180°﹣70°﹣56°=54°.【变式31】(2021春•饶平县校级期末)如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.【分析】(1)设∠DOE=x,则∠AOE=4x,列方程即可得到结论;(2)根据补角的定义即可得到结论;(3)如图,当OP在CD的上方时,当OP在CD的下方时,列方程即可得到结论.【解答】解:(1)设∠DOE=x,则∠AOE=4x,∵∠AOE的余角比∠DOE小10°,∴90°﹣4x=x﹣10°,∴x=20°,∴∠AOE=80°;(2)∠AOC在图中的所有补角是∠AOD,∠BOC,∠BOE;(3)∵∠AOE=80°,∠DOE=20°,∴∠AOD=100°,∴∠AOC=80°,如图,当OP在CD的上方时,设∠AOP=x,∴∠DOP=100°﹣x,∵∠COP=∠AOE+∠DOP,∴80°+x=80°+100°﹣x,∴x=50°,∴∠AOP=∠DOP=50°,∵∠BOD=∠AOC=80°,∴∠BOP=80°+50°=130°;当OP在CD的下方时,设∠DOP=x,∴∠BOP=80°﹣x,∵∠COP=∠AOE+∠DOP,∴100°+x=80°﹣x,∴x=50°,∴∠BOP=30°,综上所述,∠BOP的度数为130°或30°.【变式32】(2020春•石城县期中)平面内两条直线EF、CD相交于点O,OA⊥OB,OC恰好平分∠AOF.(1)如图1,若∠AOE=40°,求∠BOD的度数;(2)在图1中,若∠AOE=x°,请求出∠BOD的度数(用含有x的式子表示),并写出∠AOE和∠BOD的数量关系;(3)如图2,当OA,OB在直线EF的同侧时,∠AOE和∠BOD的数量关系是否会发生改变?若不变,请直接写出它们之间的数量关系;若发生变化,请说明理由.【分析】(1)根据邻补角的定义和角平分线的定义解答即可;(2)根据垂线的定义、邻补角的定义和角平分线的定义解答即可;(3)根据(1)(2)解答即可.【解答】解:(1)∵∠AOE=40°,∴∠AOF=180°﹣∠AOE=140°,∵OC平分∠AOF,∴∠AOC∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°﹣∠AOB﹣∠AOC=20°;(2)∵∠AOE=x°,∴∠AOF=180°﹣∠AOE=(180﹣x)°,∵OC平分∠AOF,∴∠AOC∵OA⊥OB,∴∠AOB=90°,∴∠BOD∴∠AOE=2∠BOD;(3)不变,∠AOE=2∠BOD.【变式33】(2020秋•南岗区期中)如图,直线AB、CD相交于点O,过点O作OE⊥CD.(1)如图1,求证:∠BOE﹣∠AOC=90°;(2)如图2,将射线OB沿着直线CD翻折得到射线OF,即∠BOD=∠FOD,求证:OE平分∠AOF;(3)如图3,在(2)的条件下,过点O作OG⊥AB,当∠FOG:∠AOE=2:3时,求∠COG的度数.【分析】(1)由垂直的定义及角度的和差计算可得;(2)证明OE平分∠AOF,即证明∠AOE=∠EOF,通过题目中角度的和差运算可得;(3)设出∠FOG的度数,表示出∠AOE的度数,找到等量关系,列出等式,求出未知数的值,即可.【解答】解:(1)如图,∵AB,CD相交于点O,∴∠AOC=∠BOD,∵OE⊥OD,∴∠DOE=90°,∴∠DOE=∠BOE﹣∠BOD=90°,∴∠BOE﹣∠AOC=90°.(2)如图,∵OE⊥OD,∴∠DOE=90°,∴∠EOF+∠FOD=90°,∴2∠EOF+2∠FOD=180°,∵∠BOD=∠FOD,∴∠FOB=2∠FOD,∴2∠EOF=180°﹣∠FOB=∠AOF,∴∠AOE=∠EOF,∴OE平分∠AOF.(3)如图,∵∠FOG:∠AOE=2:3,∴设∠FOG=2α,则∠AOE=3α,∴∠EOG=3α﹣2α=α,∵∠EOG+∠GOD=90°,∠GOD+∠BOD=90°,∴∠EOG=∠BOD=α,∴∠FOD=∠BOD=α,∵A,O,B三点在一条直线上,∴3α+α+2α+α=180°,解得α=22.5°,∴∠COG=112.5°.【考点4运用分类讨论思想求角】【例4】(2020秋•永嘉县校级期末)直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF=53∠DOF,求∠【分析】(1)根据∠BOC=130°,OE平分∠BOD即可求∠AOE的度数;(2)①根据OF⊥OE,OE平分∠BOD,即可判断OF是∠AOD的平分线;②根据OF平分∠AOE,∠AOF=53∠DOF,即可求∠【解答】解:(1)∵∠BOC=130°,∴∠AOD=∠BOC=150°,∠BOD=180°﹣∠BOC=50°∵OE平分∠BOD,∴∠DOE=25°∴∠AOE=∠AOD+∠DOE=155°.答:∠AOE的度数为155°(2)①OF是∠AOD的平分线,理由如下:∵OF⊥OE,∴∠EOF=90°∴∠BOE+∠AOF=90°∵OE平分∠BOD,∴∠BOE=∠DOE∴∠DOE+∠AOF=90°∠DOE+∠DOF=90°∴∠AOF=∠DOF∴OF是∠AOD的平分线;②∵∠AOF=53∠设∠DOF=3x,则∠AOF=∠5x,∵OF平分∠AOE,∴∠AOF=∠EOF=5x∴∠DOE=2x∵OE平分∠BOD,∴∠BOD=4x5x+3x+4x=180°∴x=15°.∴∠BOD=4x=60°.答:∠BOD的度数为60°.【变式41】(2021秋•南岗区校级月考)如图,点O在直线EF上,点A、B与点C、D分别在直线EF两侧,且∠AOB=120°,∠COD=70°.(1)如图1,若OC平分∠BOD,求∠AOD的度数;(2)如图2,在(1)的条件下,OE平分∠AOD,过点O作射线OG⊥OB,求∠EOG的度数;(3)如图3,若在∠BOC内部作一条射线OH,若∠COH:∠BOH=2:3,∠DOE=5∠FOH,试判断∠AOE与∠DOE的数量关系.【分析】(1)根据角平分线定义和周角是360°可得∠AOC的度数;(2)分两种情况:当OG在EF下方时;当OG在EF上方时,计算即可;(3)由∠COH:∠BOH=2:3,∠DOE=5∠FOH,设∠DOE=5α,则∠FOH=α,再结合角平分线的性质可用α表达出∠COH∠BOC的度数,求出∠AOE与∠DOE的度数.【解答】解:(1)∵OC平分∠BOD,∴∠BOD=2∠COD=2×70°=140°,∵∠AOB=120°,∴∠AOD=360°﹣∠AOB﹣∠BOD=360°﹣120°﹣140°=100°.(2)当OG在EF下方时,∵OE平分∠AOD,∠AOD=100°,∴∠AOE∵OG⊥OB,∴∠BOG=90°,∴∠AOG=∠AOB﹣∠BOG=120°﹣90°=30°,∴∠EOG=∠AOG+∠AOE=80°.当OG在EF上方时,∵OE平分∠AOD,∠AOD=100°,∴∠AOE∵OG⊥OB,∴∠BOG=90°,∵∠AOE+∠AOB+∠BOG+∠EOG=360°,∠AOB=120°,∴∠EOG=360°﹣50°﹣120°﹣90°=100°;(3)设∠DOE=5α,则∠FOH=α,∴∠COH=180°﹣∠DOE﹣∠COD﹣∠FOH=110°﹣6α,∴∠BOC=275°﹣15α,∴∠AOD=360°﹣∠COD﹣∠BOC﹣∠AOB=360°﹣70°﹣(275°﹣15α)﹣120°=15α﹣105°,∴∠AOE=10α﹣105°,∴∠AOE=2∠DOE﹣105°.【变式42】(2020秋•门头沟区期末)已知,点O在直线AB上,在直线AB外取一点C,画射线OC,OD平分∠BOC.射线OE在直线AB上方,且OE⊥OD于O.(1)如图1,如果点C在直线AB上方,且∠BOC=30°,①依题意补全图1;②求∠AOE的度数(0°<∠AOE<180°);(2)如果点C在直线AB外,且∠BOC=α,请直接写出∠AOE的度数.(用含α的代数式表示,且0°<∠AOE<180°)【分析】(1)①依据OD平分∠BOC,射线OE在直线AB上方,且OE⊥OD于O,进行画图即可.②依据角平分线的定义以及垂线的的定义,即可得出∠AOE的度数;(2)分两种情况讨论:点C在直线AB上方,点C在直线AB下方,分别依据角平分线的定义以及垂线的的定义,进行计算即可.【解答】解:(1)①如图所示:②∵∠BOC=30°,OD平分∠BOC,∴∠BOD=12∠BOC=∵OD⊥OE,∴∠DOE=90°,又∵点O在直线AB上,∴∠AOE=180°﹣90°﹣15°=75°;(2)分两种情况:①当点C在直线AB上方时,如图1,同理可得,∠BOD=12α,∠DOE∴∠AOE=180°﹣90°-12α=②当点C在直线AB下方时,如图2,∵OD平分∠BOC,∴∠BOD=12∵OD⊥OE,∴∠DOE=90°,∴∠BOE=90°-12又∵点O在直线AB上,∴∠AOE=180°﹣(90°-12α)=90°+综上所述,∠AOE的度数为90°-12α或90°【变式43】(2020秋•金湖县期末)【问题情境】苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;【变式探究】小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE=m2【变式拓展】小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).【分析】(1)首先假设∠AOC=a°,然后用a表示∠AOB,再根据OD,OE两条角平分线,推出∠DOE即可;(2)首先假设∠AOC=a°,然后用a表示∠AOB,再根据OD,OE两条角平分线,用m°表示∠DOE即可;(3)分三种情况讨论,第一种:OC在AM上,第二种:OC在AM下侧,∠MON之间,第三种:OC在∠AON之间,即可得到∠DOE,【解答】解:(1)设∠AOC=a°,则∠AOB=∠AOC+∠BOC=a°+90°,∵OD平分∠AOB,OE平分∠AOC,∴∠DOE=∠AOD﹣∠AOE=12∠AOB-=12(a°+90°)-12a(2)设∠AOC=a°,则∠AOB=∠AOC+∠BOC=a°+m°,∵OD平分∠AOB,OE平分∠AOC,∴∠DOE=∠AOD﹣∠AOE=12∠AOB-=12(a°+m°)-12故答案为:m2(3)①当OC在AM上,即OC在∠BOM之间,设∠AOC=a°,则∠AOB=∠AOC+∠BOC=a°+m°,∵OD平分∠AOB,OE平分∠AOC,∴∠DOE=∠AOD﹣∠AOE=12∠AOB-=12(a°+m°)-12②当OC在直线AM下方,且OC在∠MON之间时,∠BOC=∠AOB+∠AOC=m°,∠DOE=∠AOE﹣∠AOD=12∠AOC+12∠AOB=12∠③当OC在直线AM下方,且OC在∠AON之间时,由②得,∠BOC=m°,∠DOE=12∠AOC+12∠AOB=综上所述,∠DOE=m°2或180°【考点5填写推理过程】【例5】(2021秋•皇姑区期末)填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.解:∵∠AOE=40°(已知)∴∠AOF=180°﹣∠AOE(邻补角定义)=180°﹣40°=140°∵OC平分∠AOF(已知)∴∠AOC=12∠AOF=70°(∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)=180°﹣90°﹣70°=20°【分析】由邻补角的定义可得∠AOF=140°,再由角平分线的定义得∠AOC=70°,再由一平角等于180°即可求解.【解答】解:∵∠AOE=40°(已知)∴∠AOF=180°﹣∠AOE(邻补角定义)=180°﹣40°=140°∵OC平分∠AOF(已知)∴∠AOC=12∠AOF=∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)=180°﹣90°﹣70°=20°.故答案为:∠AOE;40;140;70;角平分线的定义;平角的定义;70;20.【变式51】(2020秋•皇姑区期末)已知直线AB和CD相交于点O,∠COE=90°,OF平分∠AOE,∠COF=34°,求∠BOD的度数.解:∵∠COE=90°,∠COF=34°(已知).∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°.∵OF平分∠AOE(已知).∴∠AOE=2∠EOF(角平分线定义).∵点O是直线AB上一点(已知).∴∠BOE=180°﹣∠AOE=68°(平角定义).∵点O是直线CD上一点(已知),∴∠BOD=180°﹣∠COE﹣∠BOE=180°﹣90°﹣68°=22°(平角定义).【分析】由于∠COE是直角,∠COF=34°,由此即可求出∠EOF=90°﹣34°=56°,由于OF平分∠AOE,所以∠AOF=∠EOF=56°,由于∠COF=34°,由此即可求出∠AOC=56°﹣34°=22°,进而求解.【解答】解:∵∠COE是直角,∠COF=34°,∴∠EOF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOE=2∠EOF,∵点O是直线AB上一点,∴∠BOE=180°﹣∠AOE=68°,∵点O是直线CD上一点,∴∠BOD=180°﹣∠COE﹣∠BOE=180°﹣90°﹣68°=22°.故答案为:∠EOF,EOF,68°,68°,22°.【变式52】(2021春•普陀区校级月考)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,所以∠1=12∠BAG(因为FG平分∠AGC,所以∠2=12∠AGC得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【分析】根据邻补角的定义及题意得出∠BAG=∠AGC,再根据角平分线的定义得到∠1=∠2,即可判定AE∥GF.【解答】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=12∠因为FG平分∠AGC,所以∠2=12∠得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.【变式53】(2021秋•泉州期末)填空:(将下面的推理过程及依据补充完整)如图,已知:CD平分∠ACB,AC∥DE,CD∥EF,那么EF平分∠DEB吗?解:∵CD平分∠ACB(已知),∴∠1=∠2(角平分线的定义),∵AC∥DE(已知),∴∠1=∠3,∴∠2=∠3(等量代换),∵CD∥EF(已知),∴∠4=∠3(两直线平行,内错角相等),∠2=∠5(两直线平行,同位角相等),∴∠4=∠5(等量代换).∴EF平分∠DEB.【分析】利用角平分线的定义、平行线的性质等知识点,逐个分析得结论.【解答】解:∵CD平分∠ACB(已知),∴∠1=∠2(角平分线的定义),∵AC∥DE(已知),∴∠1=∠3,∴∠2=∠3(等量代换),∵CD∥EF(已知),∴∠4=∠3(两直线平行,内错角相等),∠2=∠5(两直线平行,同位角相等),∴∠4=∠5(等量代换).故答案为:角平分线的定义;3;两直线平行,内错角相等;两直线平行,同位角相等.【考点6平行线的判定与性质综合证明题】【例6】(2021春•镇江期中)已知:如图所示,∠BAC和∠ACD的平分线交于E,AE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系,并说明理由.【分析】(1)根据角平分线定义得出∠BAC=2∠1,∠ACD=2∠2,根据∠1+∠2=90°得出∠BAC+∠ACD=180°,根据平行线的判定得出即可;(2)根据平行线的性质和角平分线定义得出∠1=∠3,即可求出答案.【解答】(1)证明:∵∠BAC和∠ACD的平分线交于E,∴∠BAC=2∠1,∠ACD=2∠2,∵∠1+∠2=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;(2)解:∠2+∠3=90°,理由如下:∵AF平分∠BAC,∴∠BAF=∠1,∵AB∥CD,∴∠BAF=∠3,∴∠1=∠3,∵∠1+∠2=90°,∴∠2+∠3=90°.【变式61】(2021秋•建宁县期末)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于A,G,H,D,且∠1=∠2,∠B=∠C.求证:(1)BF∥EC;(2)∠A=∠D.【分析】(1)由∠1=∠2直接可得结论;(2)根据BF∥EC,∠B=∠C,可得∠B=∠BFD,从而AB∥CD,即得∠A=∠D.【解答】证明:(1)∵∠1=∠2(已知),∴BF∥EC(同位角相等,两直线平行);(2)∵BF∥EC(已证),∴∠C=∠BFD(两直线平行,同位角相等),∵∠B=∠C(已知),∴∠B=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等).【变式62】(2021秋•九龙县期末)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【分析】(1)根据,∠E=∠EMA,∠BQM=∠BMQ,结合对顶角相等可得∠E=∠BQM,利用内错角相等两直线平行可证明结论;(2)根据垂直的定义可得∠PGC=90°,由两直线平行同旁内角互补可得∠EAC+∠C=180°,结合∠2+∠C=90°,可求得∠BAC=90°,利用同位角相等两直线平行可得AB∥FP,进而可证明结论;(3)根据同旁内角互补可判定AB∥FP,结合∠BAF=3∠F﹣20°可求解∠F的度数,根据平行线的性质可得∠B=∠F,即可求解.【解答】(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=50°.【变式63】(2021秋•安居区期末)如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:①∠ABC=2∠E;②∠E+∠F=90°.【分析】(1)由∠ADE+∠BCF=180°结合邻补角互补,可得出∠BCF=∠ADC,再利用“同位角相等,两直线平行”可得出AD∥BC;(2)根据角平分线的定义及∠BAD=2∠F,可得出∠BAF=∠F,再利用“内错角相等,两直线平行”可得出AB∥EF;(3)①由AB∥EF,利用“两直线平行,内错角相等”可得出∠ABE=∠E,结合角平分线的定义可得出∠ABC=2∠E;②由AD∥BC,利用“两直线平行,同旁内角互补”可得出∠BAD+∠ABC=180°,再结合∠BAD=2∠F,∠ABC=2∠E可得出∠E+∠F=90°.【解答】解:(1)AD∥BC,理由如下:∵∠ADE+∠BCF=180°,∠ADE+∠ADC=180°,∴∠BCF=∠ADC,∴AD∥BC.(2)AB∥EF,理由如下:∵AF平分∠BAD,∠BAD=2∠F,∴∠BAF=12∠BAD=∠∴AB∥EF.(3)①∠ABC=2∠E,理由如下:∵AB∥EF,∴∠ABE=∠E.∵BE平分∠ABC,∴∠ABC=2∠ABE=2∠E.②∠E+∠F=90°,理由如下:∵AD∥BC,∴∠BAD+∠ABC=180°.∵∠BAD=2∠F,∠ABC=2∠E,∴2∠E+2∠F=180°,∴∠E+∠F=90°.【考点7平行线中的辅助线构造】【例7】(2021秋•西乡县期末)(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数;(2)【问题迁移】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.【分析】(1)过点P作PQ∥AB,根据平行线的性质可得∠FPQ=30°,∠BEP=∠EPQ=25°,进而可求解;(2)过P点作PN∥AB,则PN∥CD,根据平行线的性质可得∠PEA=∠NPE,即可得∠FPN=∠PEA+∠FPE,结合PN∥CD可求解;(3)过点G作AB的平行线GH.由平行线的性质可得∠HGE=∠AEG,∠HGF=∠CFG,结合角平分线的定义,利用角的和差可求解.【解答】解:(1)如图1,过点P作PQ∥AB,∵PQ∥AB,AB∥CD,∴CD∥PQ.∴∠CFP+∠FPQ=180°∴∠FPQ=180°﹣150°=30°,又∵PQ∥AB,∴∠BEP=∠EPQ=25°,∴∠EPF=∠EPQ+∠FPQ=25°+30°=55°;(2)∠PFC=∠PEA+∠P,理由:如图2,过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)如图3,过点G作AB的平行线GH.∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴∠HGE=∠AEG=12∠AEP,∠HGF=∠CFG=1同(1)易得,∠CFP=∠P+∠AEP,∴∠HGF=12(∠P+∠AEP)=12(α∴∠EGF=∠HGF﹣∠HGE=12(α+∠AEP)=12α+12∠【变式71】(2021秋•济阳区期末)如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一个动点P,满足0°<∠EPF<180°.(1)试问:∠AEP,∠CFP,∠EPF满足怎样的数量关系?解:由于点P是平行线AB,CD之间一动点,因此需对点P的位置进行分类讨论.①如图1,当点P在EF的左侧时,猜想∠AEP,∠CFP,∠EPF满足的数量关系,并说明理由;②如图2,当点P在EF的右侧时,直接写出∠AEP,∠CFP,∠EPF满足的数量关系为∠AEP+∠EPF+∠PFC=360°.(2)如图3,QE,QF分别平分∠PEB,∠PFD,且点P在EF左侧.①若∠EPF=100°,则∠EQF的度数为130°;②猜想∠EPF与∠EQF的数量关系,并说明理由.【分析】(1)①过点P作PH∥AB,利用平行线的性质即可求解;②过点P作PH∥AB,利用平行线的性质即可求解;(2)①根据(1)的结论,结合角平分线的定义可求解;②设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则可求∠P,∠Q,即可求解.【解答】解:(1)①如图1,当点P在EF的左侧时,过点P作PH∥AB,则PH∥CD,∴∠AEP=∠EPH,∠FPH=∠CFP,∴∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,当点P在EF的右侧时,过点P作PM∥AB,则PM∥CD,∴∠AEP+∠EPM=180°,∠PFC+∠MPF=180°,∴∠AEP+∠EPM+∠PFC+∠MPF=360°,即,∠AEP+∠EPF+∠PFC=360°;故答案为:∠AEP+∠EPF+∠PFC=360°;(2)①∠EPF=100°,则∠EQF=130°,由(1)知∠PEA+∠PFC=∠EPF=100°,∵QE,QF分别平分∠PEB和∠PFD,∴∠PFC+2∠DFQ=180°,∠PEA+2∠BEQ=180°,故∠DFQ+∠BEQ=130°=∠EQF,故答案为130°;②∠EPF+2∠EQF=360°.理由:如图3,QE,QF分别平分∠PEB和∠PFD,设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),∠Q=α+β,即:∠EPF+2∠EQF=360°.【变式72】(2021秋•农安县期末)已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为∠CDP+∠PAB﹣APD=180°.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠APD,求∠【分析】(1)过点P作EF∥AB,根据平行线的性质可得∠APE=∠A=50°,∠EPD=180°﹣150°=30°,即可求出∠APD的度数;(2)过点P作EF∥AB,则AB∥EF∥CD,根据平行线的性质可得∠CDP=∠DPF,∠FPA+∠PAB=180°,又∠FPA=∠DPF﹣APD,即可得出∠CDP+∠PAB﹣APD=180°;(3)PD交AN于点O,由AP⊥PD,得出∠APO=90°,由∠PAN+12∠PAB=∠APD得出∠PAN+12∠PAB=90°,由∠POA+∠PAN=90°,得出∠POA=12∠PAB,由对顶角相等得出∠NOD=12∠PAB,由角平分线的性质得出∠ODN=12∠PDC,即∠AND=180°-12(∠PAB+∠PDC),由(2【解答】解:(1)如图1,过点P作EF∥AB,∵∠A=50°,∴∠APE=∠A=50°,∵AB∥CD,∴EF∥CD,∴∠CDP+∠EPD=180°,∵∠D=150°,∴∠EPD=180°﹣150°=30°,∴∠APD=∠APE+∠EPD=50°+30°=80°;(2)如图2,过点P作EF∥AB,则AB∥EF∥CD,∴∠CDP=∠DPF,∠FPA+∠PAB=180°,∵∠FPA=∠DPF﹣APD,∴∠DPF﹣APD+∠PAB=180°,∴∠CDP+∠PAB﹣APD=180°,故答案为:∠CDP+∠PAB﹣APD=180°;(3)如图3,PD交AN于点O,∵AP⊥PD,∴∠APO=90°,∵∠PAN+12∠PAB=∠∴∠PAN+12∠PAB=∵∠POA+∠PAN=90°,∴∠POA=12∠∵∠POA=∠NOD,∴∠NOD=12∠∵DN平分∠PDC,∴∠ODN=12∠∴∠AND=180°﹣∠NOD﹣∠ODN=180°-12(∠PAB+∠由(2)得:∠CDP+∠PAB﹣APD=180°,∴∠CDP+∠PAB=180°+∠APD,∴∠AND=180°-12(∠PAB+∠=180°-12(180°+∠=180°-12(180°=45°.【变式73】(2021秋•南岗区校级期中)已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.【分析】(1)过点C作CM∥AB,可得∠ABC=∠BCM,再由平行线的性质得∠CDE=∠DCM,则可求得∠ABC=∠BCD+∠CDE;(2)过点C作CN∥AB,可证得CN∥EF,由∠F=∠FCN,结合垂线,从而可求得∠ABC﹣∠F=90°;(3)延长HG交EF于点Q,过点G作GP∥EF,不难证得∠FGQ=∠ABH﹣∠EFG,再由角平分线的定义得∠ABH=12∠ABC,∠EFG=12∠CFD,可得∠FGQ=12(∠【解答】(1)证明:过点C作CM∥AB,如图1,∴∠ABC=∠BCM,∵AB∥ED,∴∠CDE=∠DCM,∵∠BCM=∠BCD+∠DCM,∴∠ABC=∠BCD+∠CDE;(2)解:∠ABC﹣∠F=90°,理由:过点C作CN∥AB,如图2,∴∠ABC=∠BCN,∵AB∥ED,∴CN∥EF,∴∠F=∠FCN,∵∠BCN﹣∠BCF+∠FCN,∴∠ABC=∠BCF+∠F,∵CF⊥BC,∴∠BCF=90°,∴∠ABC=90°+∠F,即∠ABC﹣∠F=90°;(3)延长HG交EF于点Q,过点G作GP∥EF,如图3,∴∠BGD=∠CGQ,∵AB∥DE,∴∠ABH=∠EQG,∵GP∥EF,∴∠EQG=∠PGQ,∠EFG=∠PGF,∴∠PGQ=∠ABH,∴∠BGD﹣∠CGF=∠CGQ﹣∠CGF=∠FGQ,∵∠FGQ=∠PGQ﹣∠PGF,∴∠FGQ=∠ABH﹣∠EFG,∵BH平分∠ABC,FG平分∠CFD,∴∠ABH=12∠ABC,∠EFG=1∴∠FGQ=12∠ABC-12∠CFD=1由(2)可得:∠ABC﹣∠CFD=90°,∴∠FGQ=12×90即∠BGD﹣∠CGF=45°.【考点8与平行线有关的实际问题】【例8】(2021秋•罗湖区期末)请解答下列各题:(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线AB与DE射向一个水平镜面后被反射.此时∠1=∠2,∠3=∠4.①由条件可知:∠1=∠3,依据是两直线平行,同位角相等,∠2=∠4,依据是等量代换.②反射光线BC与EF平行,依据是同位角相等,两直线平行.(2)解决问题:如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b射出的光线n平行于m,且∠1=42°,则∠2=84°;∠3=90°.【分析】(1)根据平行线的判定与性质逐一求解可得;(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.【解答】解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;∠2=∠4,依据是:等量代换;②反射光线BC与EF平行,依据是:同位角相等,两直线平行;故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)如图,∵∠1=42°,∴∠4=∠1=42°,∴∠6=180°﹣42°﹣42°=96°,∵m∥n,∴∠2+∠6=180°,∴∠2=84°,∴∠5=∠7=180°-∠2∴∠3=180°﹣48°﹣42°=90°.故答案为:84°,90°.【变式81】(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?【分析】(1)根据角的关系解答即可;(2)求出∠5+∠6=180°,根据平行线的判定得出即可;(3)根据平行线的性质和平均的定义得到∠5=∠6,根据平行线的判定得出即可.【解答】(1)证明:∵∠AFE=∠BFE=90°,∵θ1=θ2.∴∠1=∠2;(2)解:直线m∥直线n,理由:如图2,∵∠1=∠2=30°,∠3=∠4=60°,∴∠5=180°﹣∠1﹣∠2=120°,∠6=180°﹣∠3﹣∠4=60°,∴∠5+∠6=180°,∴直线m∥直线n;(3)解:∵AB∥CD,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,即:∠5=∠6,∴m∥n.【变式82】(2020秋•开江县期末)当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在图①、图②中都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若α=90°,判断入射光线EF与反射光线GH的位置关系,并说明理由.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=130°,设镜子CD与BC的夹角∠BCD为钝角,入射光线EF与镜面AB的夹角∠1=x(0°<x<90°).已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出∠BCD的度数(可用含x的代数式表示).【分析】(1)在△BEG中,∠2+∠3+α=180°,α=90°,可得∠2+∠3=90°,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠FEG+∠EGH=180°,进而可得EF∥GH;(2)在△BEG中,∠2+∠3+α=180°,可得∠2+∠3=180°﹣α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG=2∠2,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,可得α与β的数量关系;(3)分两种情况画图讨论:①当n=3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH内角和,可得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,根据三角形外角定义,可得∠G=γ﹣50°,由EF∥HK,且由(1)的结论可得,γ=140°.【解答】解:(1)EF∥GH,理由如下:在△BEG中,∠2+∠3+α=180°,∵α=90°,∴∠2+∠3=90°,∵∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,∠1=∠2,∠3=∠4,∴∠1+∠2+∠FEG+∠3+∠4+∠EGH=360°,∴∠FEG+∠EGH=180°,∴EF//GH;(2)β=2α﹣180°.理由如下:在△BEG中,∠2+∠3+α=180°,∴∠2+∠3=180°﹣α,∵∠1=∠2,∠1=∠MEB,∴∠2=∠MEB,∴∠MEG=2∠2,∵∠3=∠4,∠4=∠MGB∴∠3=∠MGB,∴∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,∴β=180°﹣(∠MEG+∠MGE)=180°﹣(2∠2+2∠3)=180°﹣2(∠2+∠3)=180°﹣2(180°﹣α)=2α﹣180°;(3)90°+m或140°.理由如下:①当n=3时,如下图所示:∵∠BEG=∠1=x,∴∠BGE=∠CGH=60°﹣x,∴∠FEG=180°﹣2∠1=180°﹣2x,∠EGH=180°﹣2∠BGE=180°﹣2(60°﹣x),∵EF∥HK,∴∠FEG+∠EGH+∠GHK=360°,则∠GHK=120°,则∠GHC=30°,由△GCH内角和,得γ=90°+x.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,如下图所示:根据三角形外角定义,得∠G=γ﹣=50°,由EF∥HK,且由(1)的结论可得,∠G=γ﹣50°=90°,则γ=140°.综上所述:γ的度数为:90°+x或140°.【变式83】(2021春•广宁县期末)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度,假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=60°;(2)如图2,①若灯B射线先转动30s,灯A射线才开始转动,在灯B射线到达BQ之前,设灯A转动t秒(0<t<90),则∠MAM'=(2t)°,∠PBP'=(30+t)°;(用含t的式子表示)②在①的条件下,若AM′∥BP',则t=30秒.(3)如图3,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)①根据路程=速度×时间即可求出;②若AM′∥BP',则∠M′AB=∠P′BA,又QP∥MN,所以∠PBA=∠MAB,所以∠M′AM=∠PBP′,进而求解;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×13故答案为:60°;(2)①设灯A转动t秒(0<t<90),则∠MAM'=(2t)°,∠PBP'=(30+t)°,故答案为:(2t)°,(30+t)°;②若AM′∥BP',则∠M′AB=∠P′BA,又∵QP∥MN,∴∠PBA=∠MAB,∴∠PBA﹣∠M′AB=∠MAB﹣∠P′BA,∴∠M′AM=∠PBP′,∴2t=30+t,∴t=30;(3)不发生变化,∠BAC=2∠BCD,理由如下:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD.【考点9平行线中的旋转问题】【例9】(2021秋•三水区期末)将一副三角板中的两个直角顶点C叠放在一起(如图①),其中∠ACB=∠DCE=90°,∠A=30°,∠B=60°,∠D=∠E=45°,设∠ACE=x.(1)填空:∠BCE=90°﹣x,∠ACD=90°﹣x;(用含x的代数式表示)(2)若∠BCD=5∠ACE,求∠ACE的度数;(3)若三角板ABC不动,三角板DCE绕顶点C转动一周,当∠BCE等于多少度时CD∥AB?【分析】(1)根据题意直接得出即可;(2)先得出∠BCD=180°﹣x,再根据∠BCD=5∠ACE解得x的值即可;(3)分情况讨论求值即可.【解答】解:(1)由题知,∠BCE=∠ACB﹣∠ACE=90°﹣x,∠ACD=∠DCE﹣∠ACE=90°﹣x,故答案为:90°﹣x,90°﹣x;(2)∵∠BCD=∠ACB+∠ACD=90°+∠ACD,∴∠BCD=90°+(90°﹣x)=180°﹣x,∵∠BCD=5∠ACE,∴180°﹣x=5x,解得x=30°,即∠ACE=30°;(3)若CD∥AB分以下两种情况:①如图①,此时∠BCD+∠B=180°,∵∠B=60°,∠BCD=∠BCE+∠DCE=90°+∠BCE,∴(90°+∠BCE)+60°=180°,∴∠BCE=30°;②如备用图所示,此时∠BCD=∠B=60°,∵∠DCE=90°,∠BCE=∠BCD+∠DCE,∴∠BCE=90°+60°=150°,综上,当∠BCE等于30或150度时CD∥AB.【变式91】(2021秋•太仓市期末)如图所示,已知直线AB∥直线CD,直线EF分别交直线AB、CD于点A,C.且∠BAC=60°,现将射线AB绕点A以每秒2°的转速逆时计旋转得到射线AM.同时射线CE绕点C以每秒3°的转速顺时针旋转得到射线CN,当射线CN旋转至与射线CA重合时,则射线CN、射线AM均停止转动,设旋转时间为t(秒).(1)在旋转过程中,若射线AM与射线CN相交,设交点为P.①当t=20(秒)时,则∠CPA=40°;②若∠CPA=70°,求此时t的值;(2)在旋转过程中,是否存在AM∥CN?若存在,求出此时t的值;若不存在,请说明理由.【分析】(1)①当t=20(秒)时,∠ECP=60°,∠BAP=40°,可得∠CAP=20°,即得∠CPA=∠ECP﹣∠CAP=40°;②根据∠BAM=2t°,∠ECN=3t°,且AB∥CD,∠BAC=60°,可得(60°﹣2t°)+(180°﹣3t°)+70°=180°,即可解得t=26;(2)分两种情况:分别画出图形,根据平行线的性质,找到相等的角列方程,即可解得答案.【解答】解:(1)①如图:当t=20(秒)时,∠ECP=20×3°=60°,∠BAP=20×2°=40°,∵∠BAC=60°,∴∠CAP=∠BAC﹣∠BAP=20°,∴∠CPA=∠ECP﹣∠CAP=40°,故答案为:40°;②如图:根据题意知:∠BAM=2t°,∠ECN=3t°,∵AB∥CD,∠BAC=60°,∴∠CAP=60°﹣2t°,∠ACP=180°﹣3t°,∵∠CPA=70°,∴(60°﹣2t°)+(180°﹣3t°)+70°=180°,解得t=26,∴t的值是26;(2)存在AM∥CN,分两种情况:(Ⅰ)如图:∵AM∥CN,∴∠ECN=∠CAM,∴3t°=60°﹣2t°,解得t=12,(Ⅱ)如图:∵AM∥CN,∴∠ACN=∠CAM,∴180°﹣3t°=2t°﹣60°,解得t=48,综上所述,t的值为12或48.【变式92】(2021春•醴陵市期末)钱塘江汛期来临前,防汛指挥部准备在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是3度/秒,灯B转动的速度是1度/秒.假定这一带长江两岸河堤是平行的,即PQ∥MN.(1)当A灯转动t秒时(0<t<60),用t的代数式表示灯A射线转动的角度大小;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?【分析】(1)根据灯A转动的速度是3度/秒,A灯转动t秒,于是得到结论;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,②当60<t<120时,③当120<t<150时,3t﹣360=t+30,根据平行线的性质列方程即可得到结论.【解答】解:(1)解:∵灯A转动的速度是3度/秒,A灯转动t秒,∴灯A射线转动的角度大小为3t(0<t<60);(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴3t=(30+t)×1,解得t=15;②当60<t<120时,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA,∴∠PBD+∠CAN=180°;∴3t﹣3×60+(30+t)×1=180,解得t=82.5;③当120<t<150时,3t﹣360=t+30,解得t=195>150(不合题意),综上所述,当t=15秒或82.5秒时,两灯的光束互相平行.【变式93】(2021春•莱山区期末)我区正在打造某河流夜间景观带,计划在河两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定河两岸是平行的,即PQ∥MN,且∠BAM=2∠BAN.(1)∠BAN=60度.(2)灯A射线从AM开始顺时针旋转至AN需要90秒;(3)若灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,当AC到达AN之前时,如图2所示.①∠PBD=t+30度,∠MAC=2t度(用含有t的代数式表示);②求当AC转动几秒时,两灯的光束射线AC∥BD?(4)在BD到达BQ之前,是否还存在某一时刻,使两灯的光束射线AC∥BD?若存在,直接写出转动时间,若不存在,请说明理由.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)求出灯A射线转动180°所需时间即可;(3)①用速度乘以每条光线转动的时间即可得答案;②设A灯转动t秒,当AC到达AN之前,即0<t<90时,两灯的光束互相平行,根据2t=1•(30+t),即可解得t=30;(4)当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×13故答案为:60;(2)灯A射线从AM开始顺时针旋转至AN,旋转了180°,∴所需时间为180÷2=90(秒),故答案为:90;(3)①∵灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,∴∠PBD=(t+30)°,∠MAC=2t°,故答案为:t+30,2t;②设A灯转动t秒,当AC到达AN之前,即0<t<90时,两灯的光束互相平行,理由如下:如图:∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30(秒);(4)BD到达BQ之前,即90<t<150时,还存在某一时刻,使两灯的光束射线AC∥BD,如图:∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110(秒).【考点10与平行线有关的综合题】【例10】(2021秋•丰泽区期末)已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,连接PM、PN、PQ,PQ平分∠MPN,如图①.(1)若∠PMA=α、∠PQC=β,求∠NPQ的度数(用含α,β的式子表示);(2)过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F,如图②,请你判断EF与PQ的位置关系,并说明理由;(3)在(2)的条件下,连接EN,如图③,若∠NEF=12∠PMA,求证:NE平分∠【分析】(1)过点P作PR∥AB,可得AB∥CD∥PR,即可求得∠MPQ=α+β,再根据角平分线的定义可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件根据三角形内角和定理可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=12∠PMA,可得∠NQE+2∠QNE=180°,结合三角形的内角和定理可得∠QNE=∠NEQ,再根据平行线的性质可得∠PNE=∠【解答】解:(1)过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠MPR=∠PMA=α,∠RPQ=∠PQC=β,∴∠MPQ=∠MPR+∠RPQ=α+β,∵PQ平分∠MPN,∴∠NPQ=∠MPQ=α+β;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=α+β,∵QE∥PN,∴∠EQP=∠NPQ=α+β,∴∠EPQ=∠EQP=α+β,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)由(2)可知:∠EQP=∠AMP+∠PQC,∠EFQ=90°,∴∠QEF=90°﹣(∠AMP+∠PQC),∴∠NQE=∠PQC+∠EQP=∠AMP+2∠PQC,∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣[90°﹣(∠AMP+∠PQC)]﹣(∠AMP+2∠PQC)﹣∠QNE=180°﹣90°+∠AMP+∠PQC﹣∠AMP﹣2∠PQC﹣∠QNE=90°﹣∠PQC﹣∠QNE,∵∠NEF=12∠∴90°﹣∠PQC﹣∠QNE=12∠即∠APM+2∠PQC+2∠QNE=180°,∴∠NQE+2∠QNE=180°,∵∠NQE+∠QNE+∠NEQ=180°,∴∠QNE=∠NEQ,∵QE∥PN,∴∠PNE=∠QEN,∴∠PNE=∠QNE,∴NE平分∠PNQ.【变式101】(2020秋•仁寿县期末)如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论