版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳四中、阜南二中、阜南实验中学三校2025届高一上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设.若存在,使得,则的最小值是()A.2 B.C.3 D.2.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.43.每天,随着清晨第一缕阳光升起,北京天安门广场都会举行庄严肃穆的升旗仪式,每天升国旗的时间随着日出时间的改变而改变,下表给出了2020年1月至12月,每个月第一天北京天安门广场举行升旗礼的时间:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若据此以月份(x)为横轴、时间(y)为纵轴,画出散点图,并用曲线去拟合这些数据,则适合模拟的函数模型是()A. B.且a≠1)C. D.且a≠1)4.函数的零点所在的大致区间是A. B.C. D.5.已知,则()A. B.C. D.6.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台7.已知点,,,则的面积为()A.5 B.6C.7 D.88.已知直线,若,则的值为()A.8 B.2C. D.-29.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________.83415967212.设奇函数对任意的,,有,且,则的解集___________.13.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③14.中,若,则角的取值集合为_________.15.已知,则的最小值为___________16.已知函数,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角终边上一点.(1)求的值;(2)求的值.18.计算下列各式的值:(1);(2);(3).19.已知函数.(1)若在上的最大值为,求的值;(2)若为的零点,求证:.20.在①两个相邻对称中心的距离为,②两条相邻对称轴的距离为,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解问题:函数的图象过点,且满足__________.当时,,求的值.注:如果选择多个条件分别解答,按第一个解答计分21.已知(1)若函数和函数的图象关于原点对称,求函数的解析式(2)若在上是增函数,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题设在上存在一个增区间,结合、且,有必为的一个子区间,即可求的范围.【详解】由题设知:,,又,所以在上存在一个增区间,又,所以,根据题设知:必为的一个子区间,即,所以,即的最小值是.故选:D.【点睛】关键点点睛:结合题设条件判断出必为的一个子区间.2、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题3、C【解析】画出散点图,根据图形即可判断.【详解】画出散点图如下,则根据散点图可知,可用正弦型曲线拟合这些数据,故适合.故选:C.4、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题5、D【解析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【详解】由得,,所以故选:D6、D【解析】由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台故选D7、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A8、D【解析】根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.9、D【解析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D10、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法492、357、816;276、951、438;294、753、618;438、951、276;816、357、492;618、753、294;672、159、834;834、159、672故答案为:812、【解析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性13、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.14、【解析】△ABC中,由tanA=1,求得A的值【详解】∵△ABC中,tanA=1>0,故∴A=故答案为【点睛】本题主要考查三角函数的化简,及与三角形的综合,应注意三角形内角的范围15、【解析】根据基本不等式,结合代数式的恒等变形进行求解即可.【详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.16、【解析】运用代入法进行求解即可.【详解】,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2).【解析】(1)根据三角函数的定义可求出,然后分子分母同时除以,将弦化切,即可求出结果;(2)根据三角函数的定义可求出,,再利用诱导公式将表达式化简,即可求出结果.【详解】解:(1)因为终边上一点,所以,所以.(2)已知角终边上一点,则,所以,,所以18、(1)(2)3(3)1【解析】(1)根据实数指数幂的运算法则化简即可;(2)根据对数的运算法则和性质化简求值;(3)利用诱导公式化简求值即可.试题解析:(1)原式=-10(+2)+1=+10-10-20+1=-.(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=2+1=3.(3)原式=19、(1)2;(2)详见解析.【解析】(1)易知函数和在上递增,从而在上递增,根据在上的最大值为求解.(2)根据为的零点,得到,由零点存在定理知,然后利用指数和对数互化,将问题转化为,利用基本不等式证明.【详解】(1)因为函数和在上递增,所以在上递增,又因为在上的最大值为,所以,解得;(2)因为为的零点,所以,即,又当时,,当时,,所以,因为,等价于,等价于,等价于,而,令,所以,所以成立,所以.【点睛】关键点点睛:本题关键是由指数和对数的互化结合,将问题转化为证成20、选①②③,答案相同,均为【解析】选①②可以得到最小正周期,从而得到,结合图象过的点,可求出,从而得到,进而得到,接下来用凑角法求出的值;选③,可以直接得到最小正周期,接下来过程与选①②相同.【详解】选①②:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;选③:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;21、(1)(2)【解析】(1)化简f(x)解析式,设函数的图象上任一点,,它关于原点的对称点为,其中,,利用点在函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年行政车辆租赁合规合同样本
- 2024年度健康养生产品销售结算与市场拓展合同3篇
- 2024年特许经营合同详细条款与标的
- 2024年版:房屋买卖违约金索赔协议
- 2024年货车租赁合同(带维修责任规定)
- 2024年纪录片创作与制作服务合同版B版
- 2024年绿化工程苗木种植养护合同2篇
- 2025年度环保仓储仓单质押反担保服务协议3篇
- 2024年离婚合同书:女方放弃财产分割版版
- 运维服务能力指标体系
- LNG、CNG加气站生产安全事故应急救援预案
- 医疗废物管理条例-题及答案
- 北京版一年级数学下册《数的组成》评课稿
- 理论力学-上海交通大学中国大学mooc课后章节答案期末考试题库2023年
- 肃北县长流水金矿 矿产资源开发与恢复治理方案
- SRD控制器使用说明书
- 水下摄影技巧
- 雨水暗沟施工方案实用文档
- 医院卫生院安全生产领导责任清单
- 2023年已打印自主招生数学试题及答案
- 非计划性拔管风险评估表二
评论
0/150
提交评论