![山东省枣庄市市中区枣庄三中2025届高一数学第一学期期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view8/M01/1D/18/wKhkGWcMF4eAbEPuAAHHyflXJyM376.jpg)
![山东省枣庄市市中区枣庄三中2025届高一数学第一学期期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view8/M01/1D/18/wKhkGWcMF4eAbEPuAAHHyflXJyM3762.jpg)
![山东省枣庄市市中区枣庄三中2025届高一数学第一学期期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view8/M01/1D/18/wKhkGWcMF4eAbEPuAAHHyflXJyM3763.jpg)
![山东省枣庄市市中区枣庄三中2025届高一数学第一学期期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view8/M01/1D/18/wKhkGWcMF4eAbEPuAAHHyflXJyM3764.jpg)
![山东省枣庄市市中区枣庄三中2025届高一数学第一学期期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view8/M01/1D/18/wKhkGWcMF4eAbEPuAAHHyflXJyM3765.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市市中区枣庄三中2025届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列图象中,函数的图象可能是A. B.C. D.2.设函数,A.3 B.6C.9 D.123.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四4.在三角形中,若点满足,则与的面积之比为()A. B.C. D.5.已知圆(,为常数)与.若圆心与圆心关于直线对称,则圆与的位置关系是()A.内含 B.相交C.内切 D.相离6.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.7.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.8.已知函数,若关于的方程有四个不同的实数解,且满足,则下列结论正确的是()A. B.C. D.9.已知函数,则()A.5 B.2C.0 D.110.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上的奇函数,且,则________,________.12.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.13.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________14.已知点在直线上,则的最小值为______15.函数的单调递增区间是___________.16.设常数使方程在闭区间上恰有三个不同的解,则实数的取值集合为________,_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围18.如图,在正方体中,点分别是棱的中点.求证:(1)平面;(2)平面19.已知非空集合,.(1)当时,求,;(2)若“”是“”的充分不必要条件,求的取值范围.20.已知,且函数.(1)判断的奇偶性,并证明你的结论;(2)设,对任意,总存在,使得g(x1)=h(x2)成立,求实数c的取值范围.在以下①,②两个条件中,选择一个条件,将上面的题目补充完整,先求出a,b的值,并解答本题.①函数在定义域上为偶函数;②函数在上的值域为;21.设函数是增函数,对于任意都有(1)写一个满足条件的;(2)证明是奇函数;(3)解不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据函数的概念,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数,即可判定.【详解】由函数的概念可知,任意一个自变量的值对应的因变量的值是唯一的,可作直线从左向右在定义域内移动,得到直线与曲线的交点个数是0或1,显然A、B、D均不满足函数的概念,只有选项C满足.故选:C.【点睛】本题主要考查了函数概念,以及函数的图象及函数的表示,其中解答中正确理解函数的基本概念是解答的关键,着重考查了数形结合思想的应用.2、C【解析】.故选C.3、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题4、B【解析】由题目条件所给的向量等式,结合向量的线性运算推断P、Q两点所在位置,比较两个三角形的面积关系【详解】因为,所以,即,得点P为线段BC上靠近C点的三等分点,又因为,所以,即,得点Q为线段BC上靠近B点的四等分点,所以,所以与的面积之比为,选择B【点睛】平面向量的线性运算要注意判断向量是同起点还是收尾相连的关系再使用三角形法则和平行四边形法则进行加减运算,借助向量的数乘运算可以判断向量共线,及向量模长的关系5、B【解析】由对称求出,再由圆心距与半径关系得圆与圆的位置关系【详解】,,半径为,关于直线的对称点为,即,所以,圆半径为,,又,所以两圆相交故选:B6、D【解析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D7、A【解析】根据直线经过第一、二、四象限判断出即可得到结论.【详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.8、D【解析】先作函数和的图象,利用特殊值验证A错误,再结合对数函数的性质及二次函数的对称性,计算判断BCD的正误即可.【详解】作函数和的图象,如图所示:当时,,即,解得,此时,故A错误;结合图象知,,当时,可知是方程,即的二根,故,,端点取不到,故BC错误;当时,,即,故,即,所以,故,即,所以,故D正确.故选:D.【点睛】方法点睛:已知函数有零点个数求参数值(取值范围)或相关问题,常先分离参数,再作图象,将问题转化成函数图象的交点问题,利用数形结合法进行分析即可.9、C【解析】由分段函数,选择计算.【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题.10、A【解析】,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.0【解析】根据函数的周期性和奇偶性,结合已知条件,代值计算即可.【详解】因为满足,且,且其为奇函数,故;又,故可得,又函数是定义在上的奇函数,故,又,故.故答案为:1;0.12、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.13、1【解析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案.【详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故故答案为:1.14、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.15、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.16、①.②.【解析】利用辅助角公式可将问题转化为在上直线与三角函数图象的恰有三个交点,利用数形结合可确定的取值;由的取值可求得的取值集合,从而确定的值,进而得到结果.【详解】,方程的解即为在上直线与三角函数图象的交点,由图象可知:当且仅当时,直线与三角函数图象恰有三个交点,即实数的取值集合为;,或,即或,此时,,,.故答案为:;.【点睛】思路点睛:本题考查与三角函数有关的方程根的个数问题,解决方程根的个数的基本思路是将问题转化为两函数交点个数问题,从而利用数形结合的方式来进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据即可求出实数a的值;(2)令,根据由求得的值,再根据正弦函数的性质分析的取值情况,结合题意即可得出答案.【小问1详解】解:,∴,∴;【小问2详解】解:令,则,由得,∵在[-,]上是增函数,在[,]上是减函数,且,∴时,x有两个值;或时,x有一个值,其它情况,x值不存在,∴时函数f(x)只有1个零点,时,,要f(x)有2个零点,有,∴时,,要f(x)有2个零点,有,综上,f(x)有两个零点时,a的取值范围是.18、(1)证明见解析(2)证明见解析【解析】(1)易证得四边形为平行四边形,可知,由线面平行的判定可得结论;(2)由正方形性质和线面垂直性质可证得,,由线面垂直的判定可得平面,由可得结论.【小问1详解】分别为的中点,,,且,四边形为平行四边形,,又平面,平面,平面.【小问2详解】四边形为正方形,;平面,平面,,又,平面,19、(1),(2)【解析】(1)先解出集合B,再根据集合的运算求得答案;(2)根据题意可知A.B,由此列出相应的不等式组,解得答案.【小问1详解】,,故,;【小问2详解】由题意A是非空集合,“”是“”的充分不必要条件,故得A.B,得,或或,解得,故的取值范围为.20、(1)奇函数,证明见解析;(2).【解析】若选择①利用偶函数的性质求,若选择条件②,利用函数的单调性,求函数的值域,比较后得到值;(1)由①或②得,利用奇偶函数的定义判断;(2)根据条件转化为的值域是的值域的子集,求实数的取值范围.【详解】若选择①由,在上是偶函数,则,且,所以a=2,b=0;②当a>1时,在上单调递增,则有,解得a=2,b=0;由①或②得,(1)为奇函数证明:的定义域为R.因为,则为奇函数(2)当x>0时,,因为,当且仅当即x=1时等号成立,所以;当x<0时,因为为奇函数,所以;当x=0时,;所以的值域为[,],,,函数是单调递减函数,所以函数的值域是对任意的,总存在,使得g(x1)=h(x2)成立,,,得.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版数学八年级上册12.5《因式分解》(第1课时)听评课记录
- 现场服务协议书(2篇)
- 生活小家电代理销售合同(2篇)
- 粤人版地理七年级上册《第三节 聚落的发展变化》听课评课记录7
- 苏州市公开课苏教版六年级数学下册《确定位置》听评课记录+教学反思
- 人教版数学八年级上下册听评课记录(全册)
- 人教版部编历史八年级上册《第19课 七七事变与全民族抗战》听课评课记录3
- 五年级上册数学听评课记录《4.3 探索活动:平行四边形的面积》(18)-北师大版
- 新版华东师大版八年级数学下册《16分式复习》听评课记录15
- 人教版数学七年级下册第16课时《6.1平方根(第1课时)》听评课记录
- 2024时事政治考试题库(基础题)
- 2024山西文旅投资集团招聘117人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 小学校本课程教材《趣味数学》
- 干细胞疗法推广方案
- (2024年)电工安全培训(新编)课件
- mil-std-1916抽样标准(中文版)
- 《社区康复》课件-第七章 脑瘫患儿的社区康复实践
- 城乡环卫一体化内部管理制度
- 广汇煤炭清洁炼化有限责任公司1000万吨年煤炭分级提质综合利用项目变更环境影响报告书
- 小学数学六年级解方程练习300题及答案
- 大数据在化工行业中的应用与创新
评论
0/150
提交评论