版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专项34相似三角形-手拉手模型综合应用模型一:有公共顶点的直角三角形模型二:有公共顶点的任意三角形【类型1:有公共顶点的直角三角形】【典例2】【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.【变式1-1】如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.【变式1-2】如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).(1)问题发现当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:(3)问题解决当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.【典例2】已知:如图,△ABD∽△ACE.求证:△DAE∽△BAC.【变式2-1】如图,已知△ABD∽△ACE,求证:△ABC∽△ADE.【变式2-2】(2022春•龙岗区期末)(1)如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.易求∠DCE=°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.CE=10,BC=6,求AE的长.【变式2-3】(1)如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;(2)如图(2),D是△ABC内一点,∠BAD=∠CBD=30°,延长BD到点E,使∠CAE=30°,∠BDC=90°,AB=4,AC=2,求出AD的长.(3)如图(3),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,试证明△ADF∽△ECF,并求出的值.1.(2021秋•邵阳县期末)如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.2.(2021•长垣市模拟)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①线段AD,BE之间的数量关系为;②∠AEB的度数为.(2)拓展探究:如图2,△ACB和△AED均为等腰直角三角形,∠ACB=∠AED=90°,点B,D,E在同一直线上,连接CE,求的值及∠BEC的度数;(3)解决问题:如图3,在正方形ABCD中,CD=,若点P满足PD=,且∠BPD=90°,请直接写出点C到直线BP的距离.3.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=10,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).4.(2020秋•赣榆区期末)问题背景:(1)如图1,已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用:(2)如图2,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,BD=3,CD=5,求的值;灵活运用:(3)如图3,点A是△BCD内一点,∠ADB=∠ABC=30°,∠BAC=90°,BD=3,CD=,直接写出AD的长.专项34相似三角形-手拉手模型综合应用模型一:有公共顶点的直角三角形模型二:有公共顶点的任意三角形【类型1:有公共顶点的直角三角形】【典例2】【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.【解答】解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500【变式1-1】如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,又∵,∴△ACD∽△BCE;(2)解:过A作AG⊥CD于G,由(1)知,∠ACD=∠DCB=∠BCE=45°,∴AG=CG,在Rt△ACG中,由勾股定理得:∴CG=AG=3,∴S==.【变式1-2】如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).(1)问题发现当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:(3)问题解决当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.【解答】解:(1)∵△ABC与△BDE都是等腰直角三角形,∴DE∥AC,∴,∴,∵∠B=45°,∴直线AE,CD相交形成的较小角的度数为45°,故答案为:;45;(2)无变化,理由如下:延长AE,CD交于点F,CF交AB于点G,∵△ABC与△BDE都是等腰直角三角形,∴∠ABC=∠DBE=45°,,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,∴∠CBD=∠ABE,又∵,∴△ABE∽△CBD,∴,∠BAE=∠BCD,∴∠F=180°﹣∠BAE﹣∠AGF=180°﹣∠BCD﹣∠BGC=∠ABC=45°;(3)如图,当DE在AB上方时,作AH⊥CD于H,由A,D,E三点在同一条直线上知,∠ADB=90°,∴AD=,由(2)知∠ADH=45°,,∴AH==,CD=,∴S△ACD=CD×AH==12+,当DE在AB下方时,同理可得S△ACD=×CD×AH==12﹣,【典例2】已知:如图,△ABD∽△ACE.求证:△DAE∽△BAC.【解答】证明:∵△ABD∽△ACE,∴,∴,而∠DAE=∠BAC,∴△DAE∽△BAC.【变式2-1】如图,已知△ABD∽△ACE,求证:△ABC∽△ADE.【解答】证明:∵△ABD∽△ACE,∴∠BAD=∠CAE,=.∴∠BAD+∠BAE=∠CAE+∠BAE,即∠BAC=∠DAE,又∵=.∴△ABC∽△ADE.【变式2-2】(2022春•龙岗区期末)(1)如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.易求∠DCE=°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.CE=10,BC=6,求AE的长.【解答】解:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠B=∠ACB=∠BAC=∠DAE=60°,∴∠BAD+∠CAD=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=60°,∴∠DCE=∠ACB+∠ACE=120°,故答案为:120;(2)DE2=CD2+BD2;理由如下:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠B=45°,∴∠BCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2;(3)由(2)知,BD=CE,∵CE=10,∴BD=10,∵BC=6,∴CD=BD﹣BC=4,由(2)知,∠BCE=90°,∴∠DCE=90°,根据勾股定理得,DE2=CE2+CD2=116,在Rt△ADE中,DE2=2AE2=116,∴AE=.【变式2-3】(1)如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;(2)如图(2),D是△ABC内一点,∠BAD=∠CBD=30°,延长BD到点E,使∠CAE=30°,∠BDC=90°,AB=4,AC=2,求出AD的长.(3)如图(3),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,试证明△ADF∽△ECF,并求出的值.【解答】(1)证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD∽△ACE;(2)解:过点A作AM⊥AB,过点D作DM⊥AD,两条垂线交于M,连接BM,∴∠BAD+∠DAM=90°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,∴△ADM∽△CDB,∴,∵∠BDC=∠ADM,∴∠BDM=∠CDA,∴△BDM∽△CDA,∴,∴BM=AC==6,∴AM=,∴AD=AM=;(3)解:由(1)同理可得,△ABD∽△ACE,∴,∠ACE=∠ABD=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵AD=AE,∴,∴=3.1.(2021秋•邵阳县期末)如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,又∵,∴△ACD∽△BCE;(2)解:过A作AG⊥CD于G,由(1)知,∠ACD=∠DCB=∠BCE=45°,∴AG=CG,在Rt△ACG中,由勾股定理得:∴CG=AG=3,∴S==.2.(2021•长垣市模拟)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①线段AD,BE之间的数量关系为;②∠AEB的度数为.(2)拓展探究:如图2,△ACB和△AED均为等腰直角三角形,∠ACB=∠AED=90°,点B,D,E在同一直线上,连接CE,求的值及∠BEC的度数;(3)解决问题:如图3,在正方形ABCD中,CD=,若点P满足PD=,且∠BPD=90°,请直接写出点C到直线BP的距离.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB=AB,CD=CE=DE,∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB(SAS),∴AD=BE;②∵△CDA≌△CEB,∴∠CEB=∠ADC,∵∠CDE=60°,∴∠ADC=120°=∠CEB,∴∠AEB=120°﹣60°=60°;故答案为:①AD=BE,②60°;(2)∵△ACB和△AED均为等腰直角三角形,∴∠DAE=∠ADE=45°,∠BAC=45°,,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即∠CAE=∠BAD,∴△CAE∽△BAD,∴,∠AEC=∠ADB,∵∠ADE=45°,∴∠ADB=180°﹣∠ADE=180°﹣45°=135°,∵∠AED=90°,∴∠BEC=∠AEC﹣∠AED=∠ADB﹣∠AED=135°﹣90°=45°,故,∠BEC=45°;(3)∵点P满足PD=,∴点P在以D为圆心,为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图3,点P是两圆的交点,若点P在BD上方,连接BP,过点C作CH⊥BP于H,过点D作DE⊥CH于E,∵CD==BC,∠BCD=90°∴BD=2,∵∠BPD=90°∴BP==3,∵∠BPD=∠PHE=∠DEH=90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,四边形PHED是矩形,∴PH=DE,在△BCH和△CDE中,,∴△BCH≌△CDE,∴BH=CE,CH=DE,∴CH=PH,∵BP=3,BC=,∴CH=PH=3﹣BH,在Rt△CHB中,BC2=CH2+BH2,即()2=(3﹣BH)2+BH2,解得:BH=或.∴点C到直线BP的距离为或.3.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=10,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【解答】解:(1)连接AF,∵四边形AEFG、ABCD是正方形,∴∠GAF=45°,∴点A、F、C三点共线,∴AC=,AF=AG,∴CF=GD,故答案为:CF=GD,45°;(2)仍然成立,连接AF,AC,∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,,∴△CAF∽△DAG,∴CF=DG,∠ACF=∠ADG,∴∠COD=∠CAD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论